

NOAA Technical Memorandum OAR GSD-43

COMMUNITY HWRF USERS GUIDE V3.5A

AUGUST 2013

THE DEVELOPMENT TESTBED CENTER

L. Bernardet
S. Bao
R. Yablonsky
D. Stark
T. Brown

Earth System Research Laboratory
Global System Division
Boulder, Colorado
September 2013

Community HWRF Users’ Guide V3.5a

August 2013

The Developmental Testbed Center

Contributors to this Guide:

Ligia Bernardet1, Shaowu Bao2, Richard Yablonsky3, Don Stark4, and

Timothy Brown1

Please send questions to: wrfhelp@ucar.edu

1 NOAA/ESRL/GSD, Developmental Testbed Center and CIRES/CU

2 NOAA/ESRL/GSD and CIRES/CU and currently affiliated with S. Carolina Coastal University
3 University of Rhode Island
4 NCAR/RAL/JNT, Developmental Testbed Center

Acknowledgments: The authors wish to thank Karen Griggs of NCAR for offering her

desktop publishing expertise in the preparation of this document.

mailto:wrthelp@ucar.edu

 2

Table of Contents
Chapter 1: HWRF System Introduction ... 7

1.1 HWRF System Overview ... 7

1.2 HWRF Development and Support ... 9

1.3 HWRF Source Code Directory Structure ... 9

1.4 Input Data Directory Structure .. 13

1.5 Production Directory Structure .. 17

1.6 Scripts for Running HWRF .. 19

Chapter 2: Software Installation .. 21

2.1 Introduction .. 21

2.2 Obtaining the HWRF Source Code ... 21

2.3 Setting up the HWRF System ... 22

2.4 System Requirements, Libraries and Tools ... 22

2.4.1 Compilers ... 23

2.4.2 netCDF and MPI ... 23

2.4.3 LAPACK and BLAS... 24

2.5 Included Libraries ... 24

2.5.1 Component Dependencies... 25

2.6 Building WRF-NMM ... 25

2.6.1 Configuring WRF-NMM ... 26

2.6.2 Compiling WRF-NMM.. 27

2.6.3 Compiling the Idealized Tropical Cyclone WRF-NMM .. 28

2.7 Building HWRF-Utilities .. 29

2.7.1 Set Environment Variables ... 29

2.7.2 Configure and Compile ... 30

2.8 Building POM-TC .. 32

2.8.1 Set Environment Variables ... 32

2.8.2 Configure and Compile ... 32

2.9 Building GFDL Vortex Tracker .. 34

2.9.1 Set Environment Variables ... 34

2.9.2 Configure and Compile ... 34

 3

2.10 Building the NCEP Coupler ... 35

2.10.1 Configure and Compile ... 35

2.11 Building WPS ... 36

2.11.1 Background ... 36

2.11.2 Configure and Compile ... 36

2.12 Building UPP .. 38

2.12.1 Set Environment Variables ... 38

2.12.2 Configure and Compile .. 38

2.13 Building GSI ... 39

2.13.1 Background ... 39

2.13.2 Configure and Compile ... 40

Chapter 3: HWRF Preprocessing System ... 42

3.1 Introduction .. 42

3.2 How to Run the HWRF Preprocessing Using Scripts ... 43

3.2.1 hwrfdomain_wrapper ... 44

3.2.2 geogrid_wrapper .. 45

3.2.3 prep_hybrid_wrapper ... 46

3.2.4 ungrib_wrapper ... 47

3.2.5 metgrid_wrapper .. 48

3.3 Executables .. 49

3.3.1 geogrid.exe ... 49

3.3.2 ungrib.exe ... 50

3.3.3 metgrid.exe ... 50

3.3.4 hwrf_prep.exe .. 51

3.4 Algorithm to Define the HWRF Domain Using the Storm Center Location 51

3.5 HWRF Domain Wizard ... 52

3.6 Inner-Core Data Assimilation.. 52

Chapter 4: HWRF Atmospheric Initialization .. 57

4.1 Overview .. 57

4.2 Domains Used in HWRF .. 62

4.3 How to Run the HWRF Initialization Using Scripts .. 63

4.3.1 real_wrapper ... 64

4.3.2 gsi_wrfinput_wrapper .. 65

 4

4.3.3 wrfanalysis_wrapper .. 66

4.3.4 wrfghost_wrapper ... 68

4.3.5 track_analysis_wrapper ... 69

4.3.6 relocate1_wrapper .. 71

4.3.7 relocate2_wrapper .. 72

4.3.8 relocate3_wrapper .. 73

4.3.9 gsi_wrfghost_wrapper .. 75

4.3.10 merge_wrapper .. 75

4.4 HWRF Initialization Executables ... 76

4.4.1 copygb.exe... 76

4.4.2 diffwrf_3dvar.exe .. 77

4.4.3 get_trk.exe ... 77

4.4.4 gsi.exe ... 77

4.4.5 hwrf_anl_4x_step2.exe .. 78

4.4.6 hwrf_anl_bogus_10m.exe ... 79

4.4.7 hwrf_anl_cs_10m.exe ... 79

4.4.8 hwrf_create_nest_1x_10m.exe .. 80

4.4.9 hwrf_create_trak_guess.exe .. 80

4.4.10 hwrf_data_flag.exe .. 80

4.4.11 hwrf_inter_2to1.exe .. 81

4.4.12 hwrf_inter_2to2.exe .. 81

4.4.13 hwrf_inter_2to6.exe .. 82

4.4.14 hwrf_inter_4to2.exe .. 82

4.4.15 hwrf_inter_4to6.exe .. 82

4.4.16 hwrf_merge_nest_4x_step12_3n.exe.. 83

4.4.17 hwrf_pert_ct1.exe ... 83

4.4.18 hwrf_split1.exe .. 84

4.4.19 hwrf_wrfout_newtime.exe .. 84

4.4.20 unipost.exe ... 85

4.5 Inner-core Data Assimilation .. 85

Chapter 5: Ocean Initialization of POM-TC ... 90

5.1 Introduction .. 90

5.2 Run Ocean Initialization Using the Wrapper Script .. 90

 5

5.3 Functions in Script “pom_init.ksh” ... 91

5.3.1 main .. 91

5.3.2 get_tracks ... 91

5.3.3 get_region ... 91

5.3.4 get_sst ... 92

5.3.5 sharpen .. 92

5.3.6 phase_3 .. 92

5.3.7 phase_4 .. 93

5.4 Executables .. 93

5.4.1 gfdl_find_region.exe ... 93

5.4.2 gfdl_getsst.exe .. 93

5.4.3 gfdl_sharp_mcs_rf_l2m_rmy5.exe ... 94

5.4.4 gfdl_ocean_united.exe ... 95

5.4.5 gfdl_ocean_eastatl.exe .. 95

5.4.6 gfdl_ocean_ext_eastatl.exe .. 96

5.4.7 gfdl_ocean_eastpac.exe .. 96

Chapter 6: How to Run the Forecast Model .. 98

6.1 Introduction .. 98

6.2 How to Run HWRF Using the Wrapper Script hwrf_wrapper 98

6.3 Running HWRF with Alternate Namelist Options .. 101

6.4 Executables .. 102

6.4.1 wrf.exe ... 102

6.4.2 hwrf_wm3c.exe ... 103

6.4.3 hwrf_ocean_united.exe .. 104

6.4.4 hwrf_ocean_eastatl.exe ... 104

6.4.5 hwrf_ocean_eastatl_ext.exe ... 105

6.4.6 hwrf_ocean_eastpac.exe .. 106

6.4.7 hwrf_swcorner_dynamic.exe ... 106

6.5 Sample HWRF namelist ... 107

Chapter 7: HWRF Post Processor ... 111

7.1 Introduction .. 111

7.2 How to Run UPP Using the Wrapper Script unipost_wrapper 111

7.3 Overview of the UPP Script .. 112

 6

7.4 Executables .. 114

7.4.1 unipost.exe ... 114

7.4.2 copygb.exe.. 115

Chapter 8: GFDL Vortex Tracker .. 116

8.1 Introduction .. 116

8.2 How to Run the GFDL Vortex Tracker Using the Wrapper Script 116

8.3 Overview of the Script tracker.ksh .. 117

8.4 How to Generate Phase Space Diagnostics ... 117

8.5 How to Run the Tracker in Cyclogenesis Mode... 118

8.6 Executables .. 118

8.6.1 hwrf_gettrk.exe ... 118

8.6.2 hwrf_vint.exe .. 126

8.6.3 hwrf_tave.exe ... 126

8.7 How to Plot the Tracker Output Using ATCF_PLOT ... 127

Chapter 9: HWRF Idealized Tropical Cyclone Simulation 129

9.1 Introduction .. 129

9.2 How to Use HWRF for Idealized Tropical Cyclone Simulations 131

9.2.1 Source code... 131

9.2.2 Input files and datasets.. 131

9.2.3 General instructions for running the executables .. 131

9.2.4 Running WPS to create the initial and boundary conditions 132

9.2.5 Running ideal.exe and wrf.exe ... 133

9.2.6 Using UPP to post-process the idealized tropical cyclone simulation output. ... 135

Appendix ... 136

 7

Chapter 1: HWRF System Introduction

1.1 HWRF System Overview
The Weather Research and Forecast (WRF) system for hurricane prediction (HWRF) is an
operational model implemented at the National Centers for Environmental Prediction (NCEP) of
the National Weather Service (NWS) to provide numerical guidance to the National Hurricane
Center for the forecasting of tropical cyclones’ track, intensity, and structure. HWRF v3.5a and
this Users’ Guide match the operational 2013 implementation of HWRF.

The HWRF model is a primitive equation non-hydrostatic coupled atmosphere-ocean model with
the atmospheric component formulated with 42 levels in the vertical. The model uses the Non-
hydrostatic Mesoscale Model (NMM) dynamic core of the WRF model (WRF-NMM), with a
parent and two nest domains. The parent domain covers roughly 80o x 80o on a rotated
latitude/longitude E-staggered grid. The location of the parent domain is determined based on the
initial position of the storm and on the National Hurricane Center (NHC) forecast of the 72-h
position, if available. The middle nest domain, of about 11° x 10°, and the inner nest domain, of
about 7.2° x 6.5°, move along with the storm using two-way interactive nesting. The stationary
parent domain has a grid spacing of 0.18° (about 27 km) while the middle nest spacing is 0.06°
(about 9 km) and the inner nest spacing is 0.02° (about 3 km). The dynamic time steps are 45, 15,
and 5 s, respectively, for the parent, middle nest, and inner nest domains.

The model physics originated primarily from the Geophysical Fluid Dynamics Laboratory
(GFDL) hurricane model, and includes a simplified Arakawa-Schubert scheme for cumulus
parameterization and a Ferrier cloud microphysics package for explicit moist physics. The
vertical diffusion scheme is based on Troen and Mahrt’s non-local scheme. The Monin-Obukhov
scheme is used for surface flux calculations, which also employ an improved air-sea momentum
flux parameterization in strong wind conditions, and a one-layer slab land model. Radiation
effects are evaluated by the GFDL scheme, which includes diurnal variations and interactive
effects of clouds. The HWRF physics includes parameterization of dissipative heating.

The NCEP Global Data Assimilation System (GDAS) 6-h forecast, initialized 6-h before a given
HWRF initialization, is used to generate the initial conditions for the hurricane model in the
operational configuration. When GDAS data is not available, the NCEP Global Forecast System
(GFS) analysis can be used. The first guess is modified using the HWRF Data Assimilation
System (HDAS) by ingesting observations in a hybrid ensemble-variational data assimilation
system called Gridpoint Statistical Interpolation (GSI). The ensemble information is obtained
from the Global Ensemble Forecast System (GEFS). HWRF has the capability of assimilating
hurricane inner core observations, such as the NOAA’s P3 aircraft tail Doppler Radar (TDR).
When TDR data is assimilated, First Guess at Appropriate Time (FGAT) is used to make sure
that GSI uses innovations calculated by comparing observations with corresponding model
analysis fields valid at the time when the observation was collected. The GFS forecasted fields
every 6 hours are used to provide lateral boundary conditions during each forecast.

The analysis is also modified by removing the vortex present in the first guess fields and inserting
a new vortex. Depending on the observed intensity of the storm and on the run being cold-started
or cycled, the new vortex may derive from a bogus procedure, from the 6-h forecast of the HWRF
model initialized 6-h previously, or from HDAS. In any case, the vortex is modified so that the
initial storm position, structure, and intensity conform to the NHC storm message.

 8

The time integration is performed with a forward-backward scheme for fast waves, an implicit
scheme for vertically propagating sound waves and the Adams-Bashforth scheme for horizontal
advection and for the Coriolis force. In the vertical, the hybrid pressure-sigma coordinate
(Arakawa and Lamb 1977) is used. Horizontal diffusion in based on a 2nd order Smagorinsky-type
following (Janjic 1990).

The Community HWRF model can be used for the following basins: North Atlantic, Eastern
North Pacific, Central Pacific, West Pacific, and Indian (including Arabian Sea and Bay of
Bengal). In the North Atlantic and Eastern North Pacific basins, for which NHC is responsible,
the atmospheric model is coupled with the Princeton Ocean Model (POM) for Tropical Cyclones
(POM-TC). The POM was developed at Princeton University. At the University of Rhode Island
(URI), the POM was coupled to the GFDL and WRF models. In the Eastern North Pacific, a one-
dimensional (column) configuration of the POM-TC is employed, while in the Atlantic basin,
POM-TC is run in three dimensions. In both basins the horizontal grid spacing is 1/6°
(approximately 18 km). In the Atlantic, the POM-TC is configured with 23 vertical levels, while
16 levels are used in the eastern north Pacific. In the other basins, HWRF is configured to run
with its atmospheric component only.

The POM-TC is initialized by a diagnostic and prognostic spin up of the ocean circulations using
climatological ocean data. For storms located in the western part of the Atlantic basin, the initial
conditions are enhanced with real-time sea surface temperature (SST), sea surface height data,
and the assimilation of oceanic “features”. During the ocean spin up, realistic representations of
the structure and positions of the Loop Current, Gulf Stream, and warm- and cold-core eddies are
incorporated using a features-based data assimilation technique developed at URI.

HWRF is suitable for use in tropical applications including real-time NWP, forecast research,
physics parameterization research, air-sea coupling research and teaching. Additionally, an
idealized tropical cyclone simulation capability has been added to HWRF V3.5a. The HWRF
system support to the community by the Developmental Testbed Center (DTC) includes the
following three main modules.

● HWRF atmospheric components
○ WRF-NMM (which has tropical physics schemes and a vortex- following

moving nest)
○ WRF Preprocessing System (WPS)
○ Vortex initialization
○ Gridpoint Statistical Interpolation (GSI)
○ Unified Post-Processor (UPP)
○ GFDL vortex tracker

● HWRF oceanic components
○ POM-TC model
○ Ocean initialization

● Atmosphere-Ocean Coupler

The atmospheric and oceanic components are interactively coupled with a Message Passing
Interface (MPI)-based coupler, which was developed at NCEP’s Environmental Modeling Center
(EMC). The atmospheric and oceanic components exchange information through the coupler; the
ocean sends the sea surface temperature (SST) to the atmosphere; the atmosphere receives the
SST and sends the surface fluxes, including sensible heat flux, latent heat flux and short-wave
radiation to the ocean, and so on. The frequency of information exchange is 9 minutes.

 9

1.2 HWRF Development and Support
All HWRF components are under the Subversion revision control system. The code repositories
are hosted and maintained as community codes at the National Center for Atmospheric Research
(NCAR), except for GSI, which is housed at the National Oceanic and Atmospheric
Administration (NOAA). A HWRF code management protocol has been established for
proposing HWRF-related modifications to the software, whether the modifications are simply
updates to the current features, bug fixes, or the addition of new features. HWRF code
development must be carried out in the branches of the repositories and frequently synchronized
with the trunks. Proposed software modifications must be thoroughly tested prior to being
committed to the code repository to protect the integrity of the evolving code base.

HWRF is being actively developed and advanced. In the future, more components will be coupled
into the HWRF system, including wave, hydrology, storm surge, and inundation components.

The HWRF modeling system software is in the public domain and is freely available for
community use. Information about obtaining the codes, datasets, documentations and tutorials can
be found at http://www.dtcenter.org/HurrWRF/users and in the following chapters of this Users
Guide. Direct all questions to wrfhelp@ucar.edu. Please also contact this email if you would like
more information on the protocols for HWRF development.

1.3 HWRF Source Code Directory Structure
The HWRF system source code has the following eight components:

● WRF Atmospheric Model
● WPS
● UPP
● GSI
● HWRF Utilities
● POM-TC
● GFDL Vortex Tracker
● NCEP Atmosphere-Ocean Coupler

The code for all components can be obtained by downloading the following tar files from the
DTC website (see Chapter 2).

● hwrfv3.5a_utilities.tar.gz
● hwrfv3.5a_pomtc.tar.gz
● hwrfv3.5a_gfdl_vortextracker.tar.gz
● hwrfv3.5a_ncep-coupler.tar.gz
● hwrfv3.5a_wrf.tar.gz
● hwrfv3.5a_wps.tar.gz
● hwrfv3.5a_upp.tar.gz
● hwrfv3.5a_gsi.tar.gz

After copying these tar files to a user-defined HWRF top directory and expanding them, the user
should see the following directories.

● WRFV3 –Weather Research and Forecasting model
● WPSV3 –WRF Pre-Processor

http://www.google.com/url?q=http%3A%2F%2Fwww.dtcenter.org%2FHurrWRF%2Fusers&sa=D&sntz=1&usg=AFQjCNGzO2oDkUGx3S7bnGN62xZ3qLWNWA
http://www.google.com/url?q=http%3A%2F%2Fwww.dtcenter.org%2FHurrWRF%2Fusers&sa=D&sntz=1&usg=AFQjCNGzO2oDkUGx3S7bnGN62xZ3qLWNWA
mailto:wrfhelp@ucar.edu

 10

● UPP –Unified Post-Processor
● GSI – Gridpoint Statistical Interpolation 3D-VAR data assimilation
● hwrf-utilities –Vortex initialization, utilities, tools, and supplemental libraries
● gfdl-vortextracker – Vortex tracker
● ncep-coupler – Ocean/atmosphere coupler
● pomtc – Tropical cyclone version of POM

For the remainder of this document, it will be assumed that the tar files have been expanded under
${SCRATCH}/HWRF.

The directory trees for these eight components are listed as follows. Note that these are the
directories after the code is compiled. Before compilation not all of these directories are present.

1. hwrf-utilities (HWRF Utilities programs and scripts)
| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the HWRF-Utilities code
| |____configure script to create the configure.hwrf file for compile
| |____exec/ (executables)
| |____libs/ (libraries including blas, sp, sfcio, bacio, w3 and bufr)
| |____makefile top level makefile
| |____parm/ (various namelists including those for WPS, WRF, GSI, and UPP;
| | relevant WRF lookup tables from run subdirectory, some of which are
| | modified for HWRF)
| |____scripts/ (scripts used to run the HWRF system)
| | |____funcs (shell functions used by the scripts)
| |____tools/ (source code for tools to run the HWRF system)
| | Makefile makefile for tools code
| | |____grbindex
| | |____hwrf_data_flag
| | |____hwrf_prep_hybrid
| | |____hwrf_readtdrstmid
| | |____hwrf_readtdrtime
| | |____hwrf_wrfout_newtime
| | |____wgrib
| |____vortex_init/ (source code for the HWRF vortex initialization)
| | Makefile makefile for vortex_init code
| | |____hwrf_anl_bogus
| | |____hwrf_anl_cs
| | |____hwrf_anl_step2
| | |____hwrf_create_nest
| | |____hwrf_create_trak_fnl
| | |____hwrf_create_trak_guess
| | |____hwrf_diffwrf_3dvar
| | |____hwrf_guess
| | |____hwrf_pert_ct

 11

| | |____hwrf_set_ijstart
| | |____hwrf_split
| | |____interpolate
| | |____merge_nest
| |____wrapper_scripts/ (top-level wrapper scripts to run the HWRF system)

 2. pomtc (POM-TC Ocean model)
| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the POM-TC code
| |____configure script to create the configure.pom file for compile
| |____fix fixed data files needed to run POM-TC
| |____makefile top level makefile
| |____ocean_exec/ (ocean model executables)
| |____ocean_init/ (source code for generating ocean model initial condition)
| | Makefile makefile for the ocean initialization code
| | |____date2day
| | |____day2date
| | |____eastatl
| | |____eastpac
| | |____ext_eastat
| | |____getsst
| | |____gfdl_find_region
| | |____sharp_mcs_rf_l2m_rmy5
| | |____united
| |____ocean_main/ (source code for the ocean forecast model)
| | Makefile makefile for the ocean model code
| | |____ocean_eastatl
| | |____ocean_eastatl_ext
| | |____ocean_eastpacl
| | |____ocean_united
| |____ocean_parm/ (namelists for ocean model)
| |____ocean_plot/ (sample GrADS scripts used to plot ocean output)

3. ncep-coupler (NCEP Coupler)
| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the coupler code
| |____configure script to create the configure.cpl file for compile
| |____cpl_exec/ (coupler executables)
| |____hwrf_wm3c/ (source code)
| |____makefile top level makefile

4. gfdl-vortextracker (GFDL Vortex Tracker)

 12

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the tracker code
| |____configure script to create the configure.trk file for compile
| |____makefile top level makefile
| |____trk_exec/ (GFDL vortex tracker executables)
| |____trk_plot/ (GFDL vortex tracker plot scripts and data)
| |____trk_src / (GFDL vortex tracker source codes)

5. WRFV3 (Atmospheric model)
| |____Makefile makefile used to compile WRFV3
| |____Registry/ (WRFV3 Registry files)
| |____arch/ (compile options)
| |____chem/ (WRF-Chem, not used in HWRF)
| |____clean script to clean created files and executables
| |____compile script to compile the WRF code
| |____configure script to create the configure.wrf file for compile
| |____dyn_em/ (Advanced Research WRF dynamic modules, not
 used by HWRF)
| |____dyn_exp/ ('toy' dynamic core, not used by HWRF)
| |____dyn_nmm/ (WRF-NMM dynamic modules, used by HWRF)
| |____external/ (external packages including ocean coupler interface)
| |____frame/ (modules for WRF framework)
| |____hydro/ (hydrology module, not used by HWRF)
| |____inc/ (include files)
| |____main/ (WRF main routines, such as wrf.F)
| |____phys/ (physics modules)
| |____run/ (run directory, not used by HWRF)
| |____share/ (modules for WRF mediation layer and WRF I/O)
| |____test/ (sub-dirs for specific configurations of WRF, such as idealized HWRF)
| |____tools/ (tools directory)
| |____var/ (WRF-Var)

See the WRF-NMM User's Guide for more information. The WRF-NMM User’s Guide is available
at http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

6. WPSV3 (WRF Pre-processor)

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the WPS code
| |____configure script to create the configure.wps file for compile
| |____geogrid/ (source code for geogrid.exe)
| |____link_grib.csh script used by ungrib to link input GRIB files, used in idealized

simulations
| |____metgrid/ (source code for metgrid.exe)

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

 13

| |____test_suite/ (WPS test cases)
| |____ungrib/ (source code for ungrib.exe)
| |____util/ (utility programs for WPSV3)

7. UPP (Unified Post-Processor)
| |____arch/ (compile options)
| |____bin/ (executables)
| |____clean script to clean created files and executables
| |____compile script to compile the UPP code
| |____configure script to create the configure.upp file for compile
| |____include/ (include files)
| |____lib/ (libraries)
| |____makefile makefile used to build UPP code
| |____parm/ (parameter files to control UPP performed, not used by HWRF
| |____scripts/ (sample scripts running UPP, not used by HWRF)
| |____src/ (UPP source codes)

8. GSI (Gridpoint Statistical Interpolation)
| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the GSI code
| |____configure script to create the configure.gsi file for compile
| |____fix/ (fix files for GSI)
| |____include/ (include files)
| |____lib/ (libraries)
| |____makefile makefile used to build GSI code
| |____run/ (executables)
| |____scripts/ (sample scripts running GSI, not used by HWRF)
| |____src/ (GSI source codes)
| |____util/ (GSI utilities, not used by HWRF)

1.4 Input Data Directory Structure
Users will need the datasets below as input to HWRF components. Test datasets can be obtained
from the DTC website. In order to use the DTC-supported scripts for running HWRF, these
datasets must be stored following the directory structure below in a disk accessible by the HWRF
scripts and executables.

1. Tcvitals (TC Vitals data)
syndat_tcvitals.${YYYY}

2. abdecks (a-deck and b-deck files)
a[al|ep]${MM}${YYYY}.dat A deck file.
b[al|ep]${MM}${YYYY}.dat B deck file.

 14

3. Loop_current (loop current data for ocean initialization)
hwrf_gfdl_loop_current_wc_ring_rmy5.dat.${YYYYMMDD} and
hwrf_gfdl_loop_current_rmy5.dat.${YYYYMMDD}, where ${YYYYMMDD} is the date.
For example, hwrf_gfdl_loop_current_rmy5.dat.20121028 and
hwrf_gfdl_loop_current_wc_ring_rmy5.dat.20121028 contain the loop current and warm-
core ring information for October 28, 2012.

4. GFS (input data from GFS)
The dataset is arranged in three subdirectories

• gridded (GFS gridded data, for atmosphere initialization)

• spectral (GFS spectral data, for ocean and atmosphere initialization)

• obs (observational data for GSI in prepBUFR and BUFR formats)

Within these subdirectories there are further level of subdirectories based on the initial
time ${YYYYMMDDHH}, eg. 2012102806.

The gridded data directory contains two files

a. avn.${YYYYMMDDHH}.cyclone.trackatcfunix
b. gfs.${YYYYMMDDHH}.pgrbf${hhh}

Where ${YYYYMMDDHH} is the initial time and ${hhh} is the forecast hour. For
example, gfs.2012102806.pgrbf024 is a GFS 24h forecast in gridded GRIB format whose
initial time is October 28 06Z 2012.

The spectral data directory contains at least three GFS spectral files

a. gfs.${YYYYMMDDHH}.sf${hhh}
Forecast hours range from 0 to 126 in 3 hr increments.

b. gfs.${YYYYMMDDHH}.sanl
c. gfs.${YYYYMMDDHH}.sfcanl

The obs data directory contains at least five files

 15

a. gfs.${YYYYMMDDHH}.${SATELLITE}.tm${hhh}.bufr_d
Known satellites are 1bamua, 1bamub, 1bhrs3, 1bhrs4, 1bmhs, airsev and goesfv.

b. gfs.${YYYYMMDDHH}.prepbufr.nr
c. gfs.${YYYYMMDDHH}.abias
d. gfs.${YYYYMMDDHH}.satang
e. gfs.${YYYYMMDDHH}.syndata.tcvitals.tm${hhh}

5. GDAS (input data from GDAS)
The dataset is arranged in three subdirectories

• gridded (GDAS gridded data, for atmosphere initialization)

• spectral (GDAS spectral data, for atmosphere initialization)

• obs (observational data for GSI in prepBUFR and BUFR formats)
Within these subdirectories there are further level of subdirectories based on the initial
time ${YYYYMMDDHH}, eg. 2012102806.

The gridded data directory contains three files

a. gdas1.${YYYYMMDDHH}.prgbh${hhh}
Where ${YYYYMMDDHH} is the initial time and ${hhh} is the forecast hour. There
should be three forecast hour files 3, 6 and 9.

 The obs data directory contains two files

a. gdas1.${YYYYMMDDHH}.abias
b. gdas1.${YYYYMMDDHH}.satang

 16

The spectral data directory contains at least three GFS spectral files

a. gdas1.${YYYYMMDDHH}.sf${hhh}
Forecast hours are 3, 6 and 9.

6. GEFS (input data from GEFS)
The dataset is contains only one subdirectory

• spectral (GEFS spectral data to provide ensemble information for data
assimilation)

 The spectral data directory contains eighty files

a. sfg_${YYYYMMDDHH}_fhr${hh}s_mem${mmm}
Where ${YYYYMMDDHH} is the initial time, ${hh} is the forecast hour and
${mmm} is the ensemble member ID, which ranges from 1 to 80.

7. TDR (tail doppler radar)

The data is in a file in BUFR format contained within a directory structure based upon the
storm name and observation time. For example a TDR file for the storm Sandy on October
28, 2012 would be in TDR/SANDY/20121028/gdas1.2012102812.tldplr.tm00.bufr_d.

8. Fix (time-independent files)
8.1 upp (for UPP)

 17

8.2 gsi (for GSI)
 CRTM_Coefficients

anavinfo_hwrf
atms_beamwidth.txt
bufrtab.012
global_ozinfo.txt
global_scaninfo.txt
hwrf_basinscale_satinfo.txt
hwrf_convinfo.txt
hwrf_hybens_d01_locinfo
nam_errtable.r3dv
nam_glb_berror.f77.gcv
nam_glb_berror.f77.gcv_Little_Endian
nam_global_ozinfo.txt
nam_global_pcpinfo.txt
nam_global_satangbias.txt
nam_regional_convinfo.txt
nam_regional_satinfo.txt
prepobs_errtable.hwrf
prepobs_prep.bufrtable

8.3 ocean (for ocean initialization)

gfdl_ocean_topo_and_mask.eastatl
gfdl_ocean_topo_and_mask.eastatl_extn
gfdl_Hdeepgsu.eastatl

 gfdl_gdem.[00-13].ascii
 gfdl_initdata.eastatl.[01-12]
 gfdl_initdata.gdem.united.[01-12]
 gfdl.initdata.united.[01-12]
 gfdl_ocean_readu.dat.[01-12]
 gfdl_ocean_spinup_gdem3.dat.[01-12]
 gfdl_ocean_spinup_gspath.[01-12]
 gfdl_ocean_spinup.BAYuf
 gfdl_ocean_spinup.FSgsuf
 gfdl_ocean_spinup.SGYREuf
 gfdl_ocean_topo_and_mask.united

 gfdl_pctwat
 gfdl_raw_temp_salin.eastpac.[01-12]

1.5 Production Directory Structure
When using the scripts included in the released tar files to run the HWRF system, the following
production directories will be created and populated:

 18

The top production directory is: ${HWRF_OUTPUT_DIR}/${SID}/${YYYYMMDDHH} (where
SID is storm ID, e.g., 09L, and ${YYYYMMDDHH} is the forecast initial time).

The directory ${HWRF_OUTPUT_DIR}/${SID}/${YYYYMMDDHH} will have the following
sub-directories:

messages (created by hwrfdomain.ksh)
geoprd (created by geogrid.ksh)
ungribprd (created by ungrib.ksh)
metgridprd (created by metgrid.ksh)
prep_hybrid (created by prep_hybrid.sh)
prep_hybrid_GFS (created by prep_hybrid.sh)
realprd (created by real.ksh)
realprd_GFS (created by real.ksh)
wrfghostprd (created by wrf.ksh run in “ghost” mode)
wrfanalysisprd (created by wrf.ksh run in “analysis” mode)
trkanalysisprd (created by track_analysis.ksh)
relocateprd (created by the vortex initialization scripts)
gsiprd (created by the GSI scripts, if GSI is run)
mergeprd (created by merge.ksh)
oceanprd (created by the ocean initialization scripts)

• sharpn (created by the sharpening program, present only for the “united”
ocean domain)

• getsst (created by the procedure to extract the SST from GFS)

• phase3 (created by the 48-hr spin-up procedure to generate

• geostrophically-balanced currents)

• phase4 (created by the 72-hr spin-up procedure using the wind
• stress extracted from the NHC hurricane message file)

wrfprd (created by wrf.ksh in “main” mode)
postprd (created by run_unipost)
gvtprd (created by tracker.ksh)

 19

1.6 Scripts for Running HWRF
It is recommended that HWRF v3.5a be run using the shell scripts provided with the HWRF
v3.5a release. The scripts are located in two directories. In hwrf-utilities/scripts, users can find
low-level scripts that interact with the executables, input/output files, and work directories. These
scripts require that several environment variables be set. To make running HWRF easier, a set of
high-level wrapper scripts and a list of global variables are provided in the directory hwrf-
utilities/wrapper_scripts. The users should edit the list of global variables to customize the
options for running the HWRF system. The wrapper scripts will read the options specified in the
list of global variables and drive the low-level scripts. Usually users will not need to modify the
low-level and wrapper scripts, unless otherwise instructed in the following chapters of the Users
Guide. The list of the environment variables defined in hwrf-utilities/wrapper_scripts/global_
vars.ksh can be found in the Appendix.

Some of the executables are parallel code and can only run on the computation nodes. We
recommend that users first connect to the computer’s remote computation nodes. To do this on
Linux machines that run the MOAB/Torque, such as Jet, users can use the qsub command. For
example, the command below requests a two-hour connection of 24 cores on the “sJet” nodes
using the account “dtc-hurr”.

qsub -X -I -l procs=24,walltime=2:00:00,partition=sjet -A dtc-hurr

The user should seek assistance from the system administrator on how to connect to the
computation nodes on the machine used to run HWRF.

Parallel code can also be submitted to the computation nodes using a batch system. For a
platform that uses the batch system Load Sharing Facility (LSF), the wrapper script
hwrf_wrapper should be edited to contain the LSF options listed below:

#BSUB -P 99999999 # Project 99999999
#BSUB -a poe # select poe
#BSUB -n 202 # number of total (MPI) tasks
#BSUB -R "span[ptile=32]" # run a max of 16 tasks per node
#BSUB -J hwrf # job name
#BSUB -o hwrf.%J.out # output filename
#BSUB -e hwrf.%J.out # error filename
#BSUB -W 2:30 # wallclock time
#BSUB -q debug # queue
#BSUB -K # Don't return prompt until the job is finished

For a platform that uses the MOAB/Torque batch system, the wrapper script hwrf_wrapper
should be edited to contain the PBS options listed:

#PBS -A project # Project name
#PBS -l procs=202 # number of total (MPI) tasks
#PBS -o stdout.txt # Output filename
#PBS -e stder.txt # Error filename
#PBS -N hwrf # Job name
#PBS -l walltime=02:30:00 # Wallclock time

 20

#PBS -q batch # Queue name
#PBS -d . # Working directory of the job

After the batch system options and environment variables are defined, run the wrapper scripts (for
example hwrf_wrapper) using the command:

● On machines with LSF:
bsub < hwrf_wrapper

● On machines with MOAB/Torque:
qsub hwrf_wrapper

The wrapper script hwrf_wrapper will be submitted to the computation nodes and, once it starts,
will call the low-level script wrf.ksh.

 21

Chapter 2: Software Installation

2.1 Introduction
The DTC community HWRF system, which is based on the NOAA operational HWRF, consists
of eight components.

● WRF Atmospheric Model
● WPS
● UPP
● GSI
● HWRF Utilities
● POM-TC
● GFDL Vortex Tracker
● NCEP Atmosphere-Ocean Coupler

Each of these components is available from the DTC as community software. The first three of
these components are the traditional WRF components: WRF, WPS, and UPP. GSI is a 3D
variational data assimilation code used for data assimilation, and the remaining four components
are specific to the hurricane system itself, and as such are referred to as the hurricane components
of the HWRF system.

This chapter discusses how to build the HWRF system. It starts in Section 2.2 by discussing
where to find the source code. Section 2.3 covers the preferred directory structure and how to
unpack the tar files. Section 2.4 covers the system requirements for building and running the
components. Section 2.5 discusses the libraries included in the HWRF-Utilities component.
Section 2.6 covers building WRF-NMM for HWRF. The remaining sections are devoted to
building each of the remaining components of the HWRF system.

2.2 Obtaining the HWRF Source Code
The HWRF hurricane system consists of eight components. All of these are available from the
HWRF website. While most of these codes are also available from other community websites, the
versions needed for HWRF should be acquired from the DTC HWRF website to ensure they are a
consistent set.

All of the HWRF components can be obtained through the HWRF website
http://www.dtcenter.org/HurrWRF/users

by selecting the Download and HWRF System tabs on the left vertical menu. New users must first
register before downloading the source code. Returning users need only provide their registration
email address. A successful download produces eight tar files.

● hwrfv3.5a_hwrf-utilities.tar.gz
● hwrfv3.5a_pomtc.tar.gz
● hwrfv3.5a_gfdl-vortextracker.tar.gz
● hwrfv3.5a_ncep-coupler.tar.gz
● hwrfv3.5a_WRFV3.tar.gz
● hwrfv3.5a_WPSV3.tar.gz
● hwrfv3.5a_UPP.tar.gz

http://www.dtcenter.org/HurrWRF/users

 22

● hwrfv3.5a_GSI.tar.gz

After downloading each of the component codes, the user should check the links to known issues
and bug fixes to see if any code updates are required. You now have all the HWRF system
components as gzipped tar files. The next section describes how to organize them.

2.3 Setting up the HWRF System
The HWRF run scripts provided by the DTC are reasonably flexible and with minimal effort can
support almost any layout. For simplicity, it is assumed that the HWRF system will be set up in a
single flat directory structure. Because of the storage requirements necessary for the complete
HWRF system setup, it typically will need to be located on a computer’s “scratch” or “work”
partition. Prior to unpacking the tar files you have just downloaded, create a single working
directory in your workspace. Move the tar files into it, and unpack them there.

You may use the UNIX commands:

 mkdir -p ${SCRATCH}/HWRF
 mv *.gz ${SCRATCH}/HWRF
 cd ${SCRATCH}/HWRF

The tar files can be unpacked by use of the GNU gunzip command,

gunzip *.tar.gz

and the tar files extracted by running tar -xvf individually on each of the tar files.

Once unpacked, there should be the eight source directories.

● WRFV3 –Weather Research and Forecasting model
● WPSV3 –WRF Pre-processor
● UPP –Unified Post-Processor
● GSI – Gridpoint statistical interpolation 3D var data assimilation
● hwrf-utilities –Vortex initialization, utilities, tools, and supplemental libraries
● gfdl-vortextracker – Vortex tracker
● ncep-coupler – Ocean/atmosphere coupler
● pomtc – Tropical cyclone version of POM

A ninth directory for the output can also be created here as well.

 mkdir results

The user should make sure the output directory created here is consistent with the environment
variable HWRF_OUTPUT_DIR defined in hwrf-utilities/wrapper_scripts/global_vars.ksh.

The next section covers the system requirements to build the HWRF system.

2.4 System Requirements, Libraries and Tools
In practical terms, the HWRF system consists of a collection of shell scripts, which run a
sequence of serial and parallel code executables. The source code for these executables is in the
form of programs written in FORTRAN, FORTRAN 90, and C. In addition, the parallel
executables require some flavor of MPI/OpenMP for the distributed memory parallelism, and the

 23

I/O relies on the netCDF I/O libraries. Beyond the standard shell scripts, the build system relies
on use of the Perl scripting language and GNU make and date.

The basic requirements for building and running the HWRF system are listed below.

● FORTRAN 90+ compiler
● C compiler
● MPI v1.2+
● Perl
● netCDF V3.6+
● LAPACK and BLAS
● GRIB1/2

Because these tools and libraries are typically the purview of system administrators to install and
maintain, they are lumped together here as part of the basic system requirements.

2.4.1 Compilers

The DTC community HWRF system has been tested on a variety of computing platforms.
Currently the HWRF system is actively supported on Linux computing platforms using both the
Intel and PGI Fortran compilers. Unforeseen build issues may occur when using older compiler
versions. Typically the best results come from using the most recent version of a compiler. The
known issues section of the community website provides the complete list of compiler versions
currently supported.

While the community HWRF build system provides legacy support for the IBM AIX platforms,
the unavailability of AIX test platforms means all AIX support is cursory at best.

2.4.2 netCDF and MPI

The HWRF system requires a number of support libraries not included with the source code.
Many of these libraries may be part of the compiler installation, and are subsequently referred to
as system libraries. For our needs, the most important of these libraries are netCDF and MPI.

An exception to the rule of using the most recent version of code, libraries, and compilers is the
netCDF library. The HWRF system I/O requires the most recent V3 series of the library. Version
4 of netCDF diverges significantly from version 3, and is not supported. The preferred version of
the library is netCDF V3.6+. The netCDF libraries can be downloaded from the Unidata website.

http://www.unidata.ucar.edu

Typically, the netCDF library is installed in a directory that is included in the users path such as
/usr/local/lib. When this is not the case, the environment variable NETCDF, can be set to point to
the location of the library. For csh/tcsh, the path can be set with the command:

setenv NETCDF /path_to_netcdf_library/.

For bash/ksh, the path can be set with the command:

export NETCDF=/path_to_netcdf_library/.

It is crucial that system libraries, such as netCDF, be built with the same FORTRAN compiler,
compiler version, and compatible flags, as used to compile the remainder of the source code. This

 24

is often an issue on systems with multiple FORTRAN compilers, or when the option to build with
multiple word sizes (e.g. 32-bit vs. 64-bit addressing) is available.

Many default Linux installations include a version of netCDF. Typically this version is only
compatible with code compiled using gcc. To build the HWRF system, a version of the library
must be built using your preferred compiler and with both C and FORTRAN bindings. If you
have any doubts about your installation, ask your system administrator.

Building and running the HWRF distributed memory parallel executables requires that a version
of the MPI library be installed. Just as with the netCDF library, the MPI library must be built with
the same FORTRAN compiler, and use the same word size option flags, as the remainder of the
source code.

Installing MPI on a system is typically a job for the system administrator and will not be
addressed here. If you are running HWRF on a computer at a large center, check the machines’
documentation before you ask the local system administrator.

2.4.3 LAPACK and BLAS

The LAPACK and BLAS are open source mathematics libraries for the solution of linear algebra
problems. The source code for these libraries is freely available to download from NETLIB at

http://www.netlib.org/lapack/.

Most commercial compilers provide their own optimized versions of these routines. These
optimized versions of BLAS and LAPACK provide superior performance to the open source
versions.

On Linux systems, HWRF supports both the Intel ifort and PGI pgf90 Fortran compilers. The
Intel compiler has its own optimized version of the BLAS and LAPACK routines called the Math
Kernel Library or MKL. The MKL libraries provide most of the LAPACK and BLAS routines
needed by the HWRF system. The PGI compiler typically comes with its own version of the
BLAS and LAPACK libraries. Again, the PGI version of BLAS and LAPACK contain most of
the routines needed by HWRF. For PGI these libraries are loaded automatically. Since the vender
versions of the libraries are often incomplete, a copy of the full BLAS library is provided with the
HWRF-Utilities component. The build system links to this version of the libraries last.

On the IBM machines, the AIX compiler is often, but not always, installed with the Engineering
and Scientific Subroutine Libraries or ESSL. In part, the ESSL libraries are highly optimized
parallel versions of many of the LAPACK and BLAS routines. The ESSL libraries provide all of
the necessary linear algebra library routines needed by the HWRF system.

2.5 Included Libraries
For convenience in building HWRF-Utilities, the POM-TC, and the GFDL Vortex Tracker
components, the HWRF-Utilities component includes a number of libraries in the hwrf-
utilities/libs/src/ directory. These libraries are built automatically when the HWRF-Utilities
component is built. The included libraries are listed below.

● BACIO
● BLAS
● BUFR
● SFCIO

 25

● SIGIO
● SP
● W3

The other components, WPS, WRF, UPP, and GSI, come with their own versions of many of
these libraries, but typically they have been customized for that particular component and should
not be used by the other components.

When the HWRF-Utilities component is compiled, it starts by first building all the included
libraries. The vortex initialization code contained in the HWRF-Utilities component requires all
of the above libraries except for the SFCIO library. In addition, it requires both the BLAS and
LAPACK mathematical libraries when the IBM ESSL library is not included with the compiler
installation.

The POMTC component requires the SFCIO, SP and W3 libraries. In addition, the local copy of
the BLAS library is required when the ESSL library is not included with the compiler installation.
This is because the vender-supplied versions of BLAS are typically incomplete, and the local
version supplements the vender version. Typically this is for any system other than IBM. The
GFDL vortex tracker component requires the BACIO and W3 libraries. The NCEP-Coupler does
not require any additional libraries.

2.5.1 Component Dependencies

The eight components of the HWRF system have certain inter-dependencies. Many of the
components depend on libraries produced by other components. For example, four of the
components, WPS, UPP, GSI, and the HWRF-Utilities, require linking to the WRF I/O API
libraries to build. Since these I/O libraries are created as part of the WRF build, the WRF
component must be built first. Once WRF is built, WPS, UPP, GSI, or the HWRF-Utilities can be
built in any order. Since building the HWRF-Utilities produces the supplemental libraries needed
by POM-TC and by the GFDL Vortex Tracker, the HWRF utilities must be built before either of
these components. The remaining component, the NCEP Coupler, can be built independently of
any of the other components.

The component dependency is as follows.

● WRF
○ WPS
○ UPP
○ GSI
○ HWRF Utilities

■ POM-TC (BLAS on Linux, sfcio, sp, w3)
■ GFDL vortex tracker (w3 & bacio)

● NCEP Coupler

2.6 Building WRF-NMM
The WRF code has a fairly sophisticated build mechanism. The package attempts to determine
the machine where the code is being built, and then presents the user with supported build options
on that platform. For example, on a Linux machine, the build mechanism determines whether the
machine is 32-bit or 64-bit, prompts the user for the desired type of parallelism (such as serial,

 26

shared memory, distributed memory, or hybrid), and then presents a selection of possible
compiler choices.

In addition, starting with the current version of HWRF, the user may choose to run WRF with
either real or idealized input data. The idealized data case requires setting environment flags prior
to compiling the code, which creates a unique executable that should only be run with the
idealized data.

2.6.1 Configuring WRF-NMM

To correctly configure WRF-NMM for the HWRF system, set the following additional
environment variables beyond what WRF typically requires:

In C-Shell use the commands:

setenv HWRF 1
setenv WRF_NMM_CORE 1
setenv WRF_NMM_NEST 1
setenv WRFIO_NCD_LARGE_FILE_SUPPORT 1

and for IBM AIX builds add:

setenv IBM_REDUCE_BUG_WORKAROUND 1

In Bash Shell use the commands:

export HWRF=1
export WRF_NMM_CORE=1
export WRF_NMM_NEST=1
export WRFIO_NCD_LARGE_FILE_SUPPORT=1

and for IBM AIX builds add:

export IBM_REDUCE_BUG_WORKAROUND=1

These settings produce a version of WRF-NMM compatible with the HWRF system.

There is a bug in the IBM MPI implementation. Some MPI processes will get stuck in
MPI_Reduce and not return until the PREVIOUS I/O server group finishes writing. When the
environment variable IBM_REDUCE_BUG_WORKAROUND is set to 1, a workaround is used
that replaces the MPI_Reduce call with many MPI_Send and MPI_Recv calls that perform the
sum on the root of the communicator.

Note that setting the environment variable WRF_NMM_NEST to 1 does not preclude running
with a single domain.

To configure WRF-NMM, go to the top of the WRF directory (cd
${SCRATCH}/HWRF/WRFV3) and type:

./configure

You will be presented with a list of build choices for your computer. These choices may include
multiple compilers and parallelism options.

 27

For Linux architectures, there are currently 55 options. For the HWRF system, only the
distributed memory (dmpar) builds are recommended. Therefore as an example, the acceptable
PGI options are 3, 7, 11, or 15 (shown below).

3. Linux x86_64 i486 i586 i686, PGI compiler with gcc (dmpar)
7. Linux x86_64 i486 i586 i686 PGI compiler with pgcc YELLOWSTONE (dmpar)
11. Linux x86_64, PGI compiler with pgcc, SGI MPT (dmpar)
15. Linux x86_64, PGI accelerator compiler with gcc (dmpar)

The configure step for the WRF model is now completed. A file has been created in the WRF
directory called configure.wrf. The compile options and paths in the configure.wrf file can be
edited for further customization of the build process.

2.6.2 Compiling WRF-NMM

To build the WRF-NMM component enter the command:

./compile nmm_real

It is generally advisable to save the standard out and error to a log file for reference. In the
csh/tcsh shell this can be done with the command:

./compile nmm_real |& tee build.log

For the ksh/bash shell use the command:

./compile nmm_real 2>&1 | tee build.log

In both cases, this sends the standard out and the standard error to both the file build.log and to
the screen.

The approximate compile time varies according to the system being used and the aggressiveness
of the optimization. . On IBM AIX machines, the compiler optimization significantly slows down
the build time and it typically takes at least half an hour to complete. On most Linux systems, the
WRF model typically compiles in around 20 minutes.

It is important to note that the commands ./compile -h and ./compile produce a listing of all of the
available compile options, but only the nmm_real option is relevant to the HWRF system.

To remove all object files (except those in external/), type:

./clean

To conduct a complete clean that removes all built files in all directories, as well as the
configure.wrf, type:

./clean -a

A complete clean is strongly recommended if the compilation failed, the Registry has been
changed, or the configuration file is changed.

A successful compilation produces two executables listed below in the directory main.

real_nmm.exe: WRF initialization
wrf.exe: WRF model integration

 28

Further details on the HWRF atmospheric model, physics options, and running the model can be
found in the Running HWRF chapter of the User’s Guide.

Complete details on building and running the WRF-NMM model are available in the WRF-NMM
User’s Guide, which is available from the link

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

Should you experience difficulty building WRF while using the PGI compiler, a helpful guide for
building WRF with PGI compilers on a 32-bit or 64-bit LINUX system can be found at:

http://www.pgroup.com/resources/tips.htm.

2.6.3 Compiling the Idealized Tropical Cyclone WRF-NMM

The HWRF idealized tropical cyclone WRF-NMM component requires different executables than
for the real case. The following section will describe how to build the executables for the
idealized case.

Building the idealized component requires a slightly different configuration than for the standard
WRF build outlined in section 2.6.2. If a user has already built the standard WRFV3 and created
real_nmm.exe and wrf.exe and now wants to build WRFV3 for idealized tropical cyclone
simulations, they first need to completely clean the previous build. This is done by running a

./clean -a

that removes ALL build files, including the executables, libraries, and the configure.hwrf. To
correctly configure WRF-NMM for the HWRF idealized tropical cyclone simulation, requires
setting the additional environment variable IDEAL_NMM_TC. The total list of required
environment variables for creating the idealized tropical cyclone component is:

In C-Shell use the commands:

setenv WRF_NMM_CORE 1
setenv WRF_NMM_NEST 1
setenv HWRF 1
setenv IDEAL_NMM_TC 1
setenv WRFIO_NCD_LARGE_FILE_SUPPORT 1

In bash or ksh shells, use the commands:

export WRF_NMM_CORE=1
export WRF_NMM_NEST=1
export HWRF=1
export IDEAL_NMM_TC=1
export WRFIO_NCD_LARGE_FILE_SUPPORT=1

To configure WRF-NMM, go to the top of the WRF directory (cd ${SCRATCH}/HWRF/WRFV3)
and type:

./configure

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf
http://www.pgroup.com/resources/tips.htm

 29

You will be presented with a list of build choices for your computer. These choices may include
multiple compilers and parallelism options.

For Linux architectures, there are currently 51 options. For the HWRF system, only the
distributed memory (dmpar) builds are recommended. Therefore as an example, the acceptable
PGI options are 3, 7, 11, or 15 (shown below).

3. Linux x86_64 i486 i586 i686, PGI compiler with gcc (dmpar)
7. Linux x86_64 i486 i586 i686 PGI compiler with pgcc YELLOWSTONE (dmpar)
11. Linux x86_64, PGI compiler with pgcc, SGI MPT (dmpar)
15. Linux x86_64, PGI accelerator compiler with gcc (dmpar)

The configure step for the WRF model is now completed. A file has been created in the WRF
directory called configure.wrf. The compile options and paths in the configure.wrf file can be
edited for further customization of the build process.

Once the configure step is complete, the code is compiled by including the target
“nmm_tropical_cyclone” to the compile command.

 ./compile nmm_tropical_cyclone

A successful compilation produces two executables in the directory main.

ideal.exe: WRF initialization
wrf.exe: WRF model integration

Note that the minimum a user needs for the idealized capability is to compile WPS and WRF. If
wanted, UPP may also be used. The components POM-TC, GSI and hwrf-utilities are not used in
HWRF idealized tropical cyclone simulations.

2.7 Building HWRF-Utilities
The hwrf-utilities directory consists of an eclectic collection of source code and libraries. The
libraries, which are provided in support of the POM-TC and the GFDL Vortex Tracker, include
the BACIO, BLAS, BUFR, SIGIO, SFCIO, SP and W3 libraries. In addition to these libraries,
this component includes the source code for the vortex initialization routines and software tools
such as the grbindex.

2.7.1 Set Environment Variables

The HWRF utilities build requires that two path variables, NETCDF and WRF_DIR, be set to
the appropriate paths. The netCDF library path NETCDF is required for building the WRF-NMM
component, and its value should be appropriately set if that component compiled successfully.
The WRF_DIR path variable should point to the WRF directory compiled in the previous section.
You must first build WRF before compiling any of the other components.

If you have followed the directory structure suggested in Section 2.3, the WRF_DIR path should
be set to ${SCRATCH}/HWRF/WRFV3. In csh/tcsh, the variables may be set with the commands:

setenv NETCDF /absolute_path_to_appropriate_netCDF_library/
setenv WRF_DIR ${SCRATCH}/HWRF/WRFV3

For the ksh/bash shells, use:

 30

export NETCDF=/absolute_path_to_appropriate_netCDF_library/
export WRF_DIR=${SCRATCH}/HWRF/WRFV3

It is crucial that the Fortran compiler used to build the libraries (Intel, PGI, XLF, etc.) be the same
as the compiler used to compile the source code.Typically, this is only an issue in two situations:
on Linux systems having multiple compilers installed; and on systems where there is a choice
between building the code with either 32-bit or 64-bit addressing.

2.7.2 Configure and Compile

To configure HWRF-Utilities for compilation, from within the hwrf-utilities directory, type:

./configure

The configure script checks the system hardware, and if the path variables are not set, asks for the
correct paths to the netCDF libraries and the WRF build directory. It concludes by asking the user
to choose a configuration supported by current machine architecture.

For Linux, seven options are available.

1. Linux x86_64, PGI compiler w/LAPACK (dmpar)
2. Linux x86_64, PGI compiler w/LAPACK, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler w/MKL (dmpar)
4. Linux x86_64, Intel compiler w/MKL, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler w/MKL, IBM POE (dmpar)
6. Linux x86_64, Intel compiler w/LAPACK (dmpar)
7. Linux x86_64, Intel compiler w/LAPACK, SGI MPT (dmpar)

For the PGI compiler, pick options 1 or 2. For Intel builds, pick option 3, 4, or 5 if your compiler
includes the MKL libraries, and option 6 or 7 if it does not.

If successful, the configure script creates a file called configure.hwrf in the hwrf-utilities
directory. This file contains compilation options, rules, and paths specific to the current machine
architecture, and can be edited to change compilation options, if desired.

In csh/tcsh, to compile the HWRF utilities and save the build output to a log file,

type:
./compile |& tee build.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee build.log

To remove all object files, type:

./clean

To conduct a complete clean that removes ALL build files, including the executables, libraries,
and the configure.hwrf, type:

./clean -a

 31

A complete clean is strongly recommended if the compilation failed or if the configuration file is
changed.

If the compilation is successful, it will create 24 executables in the directory exec/.

● diffwrf_3dvar.exe*
● grbindex.exe*
● hwrf_anl_4x_step2.exe*
● hwrf_anl_bogus_10m.exe*
● hwrf_anl_cs_10m.exe*
● hwrf_bin_io.exe
● hwrf_create_nest_1x_10m.exe*
● hwrf_create_trak_fnl.exe*
● hwrf_create_trak_guess.exe*
● hwrf_data_flag.exe*
● hwrf_inter_2to1.exe*
● hwrf_inter_2to2.exe*
● hwrf_inter_2to6.exe*
● hwrf_inter_4to2.exe*
● hwrf_inter_4to6.exe*
● hwrf_merge_nest_4x_step12_3n.exe*
● hwrf_pert_ct1.exe*
● hwrf_prep.exe*
● hwrf_readtdrstmid.exe
● hwrf_readtdrtime.exe
● hwrf_split1.exe*
● hwrf_swcorner_dynamic.exe*
● hwrf_wrfout_newtime.exe*
● wgrib.exe*

In addition, it will create ten libraries in the directory libs/.

libbacio.a - BACIO library
libblas.a - BLAS library
libbufr_i4r4.a - BUFR library built with -i4 –r4 flags
libbufr_i4r8.a - BUFR library built with -i4 -r8 flags
libsfcio_i4r4.a - SFCIO library built with -i4 -r4 flags
libsigio_i4r4.a – SIGIO library built with –i4 –r4 flags
libsp_i4r8.a - SP library built with -i4 -r8 flags
libsp_i4r4.a - SP library built with -i4 -r4 flags
libw3_i4r8.a - W3 library built with -i4 -r8 flags
libw3_i4r4.a - W3 library built with -i4 -r4 flags

These libraries will be used by the GFDL Vortex Tracker and the POM-TC ocean model. The
configuration step for these components will require setting a path variable to point to the hwrf-
utilities/libs/ directory in the HWRF utilities directory.

The HWRF-Utilities can be compiled to produce only the libraries by typing the command below.

./compile library

 32

This is useful for users that do not intend to use the entire HWRF system, but just need the
libraries to build the tracker.

2.8 Building POM-TC
 2.8.1 Set Environment Variables

The Tropical Cyclone version of the POM-TC requires three external libraries: SFCIO, SP, and
W3. On platforms that lack the ESSL mathematical libraries, typically anything other than IBM
AIX machines, a fourth library (BLAS) is required. All of these libraries are located in the hwrf-
utilities/libs/ directory and should be available if the HWRF Utilities component has been built
successfully. You must first build them before building POM-TC.

Again, assuming the directory structure proposed in Section 2.3, for csh/tcsh, the first three
library paths can be set with the commands:

setenv LIB_W3_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/
setenv LIB_SP_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/
setenv LIB_SFCIO_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/

For the ksh/bash shell, the first three library paths can be set with the commands:

export LIB_W3_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/
export LIB_SP_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/
export LIB_SFCIO_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/

In addition to the three previous libraries, POM-TC requires linear algebra routines from the
BLAS library. When building POM-TC on an IBM platform, the build will automatically use the
ESSL library, which includes highly optimized versions of some of the BLAS routines. When
building POM-TC in a platform without ESSL (such as Linux), the build system uses the BLAS
mathematical library provided with the hwrf-utilities component. In such a case, the fourth and
final path must be set to:

setenv LIB_BLAS_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/

For the csh/tcsh shells, and for the ksh/bash shells the path can be set with:

export LIB_BLAS_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/

2.8.2 Configure and Compile

To configure POM-TC for compilation, from within the pomtc directory, type:

./configure

The configure script checks the system hardware, and if the path variables are not set, asks for
software paths to the W3, SP, and SFCIO, and for Linux, the BLAS libraries. It concludes by
asking the user to choose a configuration supported by current machine architecture.

For the IBM, only one choice is available:

1. AIX (dmpar)

 33

For Linux, the options are:

1. Linux x86_64, PGI compiler (dmpar)
2. Linux x86_64, PGI compiler, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler (dmpar)
4. Linux x86_64, Intel compiler, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler, IBM POE (dmpar)

After selecting the desired compiler option, the configure script creates a file called
configure.pom. This file contains compilation options, rules, and paths specific to the current
machine architecture, and can be edited to change compilation options, if desired.

In csh/tcsh, to compile the POM-TC and save the build output to a log file, type:

./compile |& tee ocean.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee ocean.log

To remove all the object files, type:

./clean

To conduct a complete clean that removes ALL built files, object, executables, and the
configuration file configure.pom, type:

./clean -a

A complete clean is strongly recommended if the compilation failed to build, or if the
configuration file is changed.

If the compilation is successful, thirteen executables are created in ocean_exec/.

● gfdl_date2day.exe
● gfdl_day2date.exe
● gfdl_find_region.exe
● gfdl_getsst.exe
● gfdl_ocean_eastatl.exe
● gfdl_ocean_eastpac.exe
● gfdl_ocean_ext_eastatl.exe
● gfdl_ocean_united.exe
● gfdl_sharp_mcs_rf_l2m_rmy5.exe
● hwrf_ocean_eastatl.exe
● hwrf_ocean_eastatl_ext.exe
● hwrf_ocean_eastpac.exe
● hwrf_ocean_united.exe

The executables hwrf_ocean_united.exe, hwrf_ocean_eastpac.exe, hwrf_ocean_eastatl.exe, and
hwrf_ocean_eastatl_ext.exe, are the ocean model executables used during the coupled
atmosphere-ocean model run. The remaining executables are used for the ocean initialization.

 34

2.9 Building GFDL Vortex Tracker
2.9.1 Set Environment Variables

The GFDL Vortex Tracker requires two external libraries, W3 and BACIO. These libraries are
located in the hwrf-utility/libs/ directory and should be available if the HWRF utilities are
successfully built. You must build the HWRF utilities before building the vortex tracker.

Again, assuming that the directory structure is the same as that proposed in Section 2.3 for
csh/tcsh, the library paths can be set with:

setenv LIB_W3_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/
setenv LIB_BACIO_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/

For the ksh/bash shells, the library paths can be set using:

export LIB_W3_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/
export LIB_BACIO_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/

2.9.2 Configure and Compile

To configure the vortex tracker for compilation, from within the gfdl-vortextracker directory,
type:

./configure

The configure script checks the system hardware, and if the path variables are not set, asks for
software paths to the W3 and BACIO libraries. It concludes by asking the user to choose a
configuration supported by current machine architecture.

For Linux, the options are:
 1. Linux x86_64, PGI compiler (serial)
 2. Linux x86_64, Intel compiler (serial)
 3. Linux x86_64, Intel compiler super debug (serial)
 4. Linux x86_64, PGI compiler, SGI MPT (serial)
 5. Linux x86_64, Intel compiler, SGI MPT (serial)
 6. Linux x86_64, Intel compiler, IBM POE (serial)

The configure script creates a file called configure.trk. This file contains compilation options,
rules, and paths specific to the current machine architecture.

The configure file can be edited to change compilation options, if desired.

In csh/tcsh, to compile the vortex tracker and save the build output to a log file,

type:

./compile |& tee tracker.log

For the ksh/bash shell use the command:

./compile 2>&1 | tee tracker.log

 35

To remove all object files, type:

./clean

To completely clean ALL built files, object, executable, and configure.trk, type:

./clean -a

A complete clean is strongly recommended if the compilation failed, or if the configuration file is
changed.

If the compilation was successful, three executables are created in the directory trk_exec/.

1. hwrf_gettrk.exe
2. hwrf_tave.exe
3. hwrf_vint.exe

2.10 Building the NCEP Coupler
2.10.1 Configure and Compile

To configure the NCEP Coupler for compilation, from within the ncep-coupler directory, type:

./configure

The configure script checks the system hardware, asks the user to choose a configuration
supported by current machine architecture, and creates a configure file called configure.cpl.

For Linux, the options are:

1. Linux x86_64, PGI compiler (dmpar)
2. Linux x86_64, PGI compiler, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler (dmpar)
4. Linux x86_64, Intel compiler, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler, IBM POE (dmpar)

The configure file configure.cpl contains compilation options, rules, and paths specific to the
current machine architecture, and can be edited to change compilation options if desired.

In csh/tcsh, to compile the coupler and save the build output to a log file, type:

./compile |& tee coupler.log
For the ksh/bash shell, use the command:
./compile 2>&1 | tee coupler.log

To remove all the object files, type:

./clean

To completely clean ALL built files, object, executable, and configure.cpl, type:

./clean -a

 36

A complete clean is strongly recommended if the compilation failed, or if the configuration file is
changed.

If the compilation is successful, it will create the single executable hwrf_wm3c.exe in the
cpl_exec/ directory.

2.11 Building WPS
2.11.1 Background

The WRF WPS requires the same build environment as the WRF-NMM model, including the
netCDF libraries and MPI libraries. Since the WPS makes direct calls to the WRF I/O API
libraries included with the WRF model, the WRF-NMM model must be built prior to building the
WPS.

Set up the build environment for WPS by setting the WRF_DIR environment variable. For
csh/tcsh, use:

setenv WRF_DIR ${SCRATCH}/HWRF/WRFV3/

For bash/ksh, use:

export WRF_DIR=${SCRATCH}/HWRF/WRFV3/

In order to run the WRF Domain Wizard (http://esrl.noaa.gov/gsd/wrfportal/), an optional tool to
assist in creating simulation domains, Java 1.5 or later is needed. If support for GRIB 2 files is
desired, the JASPER library is also needed.

Further details on using the WPS to create HWRF input data can be found in Chapter 3 of the
HWRF Users Guide.

Complete details on building and running the WPS and the Domain Wizard, are available from
the WRF-NMM User’s Guide, and can be downloaded from:

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php

2.11.2 Configure and Compile

Following the compilation of the WRF-NMM executables, change to the WPS directory and issue
the configure command.

./configure

Select the appropriate “dmpar” option for your architecture and compiler choice. If you plan to
use GRIB2 data, you will also need to select a build option that supports GRIB2 I/O. This will
generate the configure resource file.

On Linux computers, there are 38 listed options. The first 28 are the most relevant to HWRF.
Select if you want GRIB 2 support, or if you don’t.

 1. Linux x86_64, gfortran (serial)
 2. Linux x86_64, gfortran (serial_NO_GRIB2)
 3. Linux x86_64, gfortran (dmpar)
 4. Linux x86_64, gfortran (dmpar_NO_GRIB2)

http://esrl.noaa.gov/gsd/wrfportal/
http://www.dtcenter.org/wrf-nmm/users/docs/overview.php

 37

 5. Linux x86_64, PGI compiler (serial)
 6. Linux x86_64, PGI compiler (serial_NO_GRIB2)
 7. Linux x86_64, PGI compiler (dmpar)
 8. Linux x86_64, PGI compiler (dmpar_NO_GRIB2)
 9. Linux x86_64, PGI compiler, SGI MPT (serial)
 10. Linux x86_64, PGI compiler, SGI MPT (serial_NO_GRIB2)
 11. Linux x86_64, PGI compiler, SGI MPT (dmpar)
 12. Linux x86_64, PGI compiler, SGI MPT (dmpar_NO_GRIB2)
 13. Linux x86_64, IA64 and Opteron (serial)
 14. Linux x86_64, IA64 and Opteron (serial_NO_GRIB2)
 15. Linux x86_64, IA64 and Opteron (dmpar)
 16. Linux x86_64, IA64 and Opteron (dmpar_NO_GRIB2)
 17. Linux x86_64, Intel compiler (serial)
 18. Linux x86_64, Intel compiler (serial_NO_GRIB2)
 19. Linux x86_64, Intel compiler (dmpar)
 20. Linux x86_64, Intel compiler (dmpar_NO_GRIB2)
 21. Linux x86_64, Intel compiler, SGI MPT (serial)
 22. Linux x86_64, Intel compiler, SGI MPT (serial_NO_GRIB2)
 23. Linux x86_64, Intel compiler, SGI MPT (dmpar)
 24. Linux x86_64, Intel compiler, SGI MPT (dmpar_NO_GRIB2)
 25. Linux x86_64, Intel compiler, IBM POE (serial)
 26. Linux x86_64, Intel compiler, IBM POE (serial_NO_GRIB2)
 27. Linux x86_64, Intel compiler, IBM POE (dmpar)
 28. Linux x86_64, Intel compiler, IBM POE (dmpar_NO_GRIB2)

Select the appropriate “dmpar” option for your choice of compiler.

In csh/tcsh, to compile the coupler and save the build output to a log file, type:

./compile |& tee wps.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee wps.log

To conduct a complete clean that removes ALL built files in ALL directories, as well as the
configure.wps, type:

./clean -a

A complete clean is strongly recommended if the compilation failed or if the configuration file is
changed.

After issuing the compile command, a successful compilation of WPS produces the three
symbolic links: geogrid.exe, ungrib.exe, and metgrid.exe in the main directory, and a single
symbolic link mod_levs.exe, used for the idealized tropical cyclone configuration, in the util
directory. If any of these links do not exist, check the compilation log file to determine what went
wrong.

For full details on the operation of WPS, see the WPS chapter of the WRF-NMM User’s Guide.

 38

2.12 Building UPP
The NCEP Unified Post-Processor was designed to interpolate WRF output from native
coordinates and variables to coordinates and variables more useful for analysis. Specifically, UPP
de-staggers the HWRF output, interpolates the data from its native vertical grid to standard levels,
and creates additional diagnostic variables.

The UPP requires the same Fortran and C compilers used to build the WRF model. In addition,
UPP requires the netCDF library and the WRF I/O API libraries (the latter is included with the
WRF build).

The UPP build requires a number of support libraries (IP, SP, W3), which are provided with the
source code and are located in the UPP/lib/ directory. These libraries are for the UPP build only.
They should not be confused with the libraries of the same name located in the hwrf-utilities/libs
directory.

2.12.1 Set Environment Variables

The UPP requires the WRF I/O API libraries to successfully build. These are created when the
WRF model is built. If the WRF model has not yet been compiled, it must first be built before
compiling UPP.

Since the UPP build requires linking to the WRF-NMM I/O API libraries, it must be able to find
the WRF directory. The UPP build uses the WRF_DIR environment variable to define the path to
WRF. The path variable WRF_DIR must therefore be set to the location of the WRF root
directory.

In addition to setting the path variable, building UPP for use with HWRF requires setting the
environment variable HWRF. This is the same variable set when building WRF-NMM for
HWRF.

To set up the environment for UPP, the environment variables can be set by typing (for csh/tcsh):

setenv HWRF 1
setenv WRF_DIR ${SCRATCH}/HWRF/WRFV3/

For bash/ksh, the environment variables can be set by typing:

export HWRF=1
export WRF_DIR=${SCRATCH}/HWRF/WRFV3/

2.12.2 Configure and Compile

UPP uses a build mechanism similar to that used by the WRF model. Type configure

./configure

to generate the UPP configure file. The configure script will complain if the WRF_DIR path has
not been set. You will then be given a list of configuration choices tailored to your computer.

For the LINUX operating systems, there are 12 options. Select the appropriate “dmpar” option
compatible with your system.

 39

1. Linux x86_64, PGI compiler (serial)
2. Linux x86_64, PGI compiler (dmpar)
3. Linux x86_64, PGI compiler, SGI MPT (serial)
4. Linux x86_64, PGI compiler, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler (serial)
6. Linux x86_64, Intel compiler (dmpar)
7. Linux x86_64, Intel compiler, SGI MPT (serial)
8. Linux x86_64, Intel compiler, SGI MPT (dmpar)
9. Linux x86_64, Intel compiler, IBM POE (serial)
10. Linux x86_64, Intel compiler, IBM POE (dmpar)
11. Linux x86_64, gfortran compiler (serial)
12. Linux x86_64, gfortran compiler (dmpar)

The configuration script will generate the configure file configure.upp. If necessary, the
configure.upp file can be modified to change the default compile options and paths.

To compile UPP, enter the command (csh/tsch):

./compile |& tee build.log
For the ksh/bash shell, use the command:
./compile 2>&1 | tee build.log

This command should create eight UPP libraries in lib/ (libCRTM.a, libbacio.a, libip.a,
libmersenne.a, libsfcio.a, libsigio.a, libsp.a, and libw3.a), and three UPP executables in bin/
(unipost.exe, ndate.exe, and copygb.exe). Once again, these libraries are for the UPP only, and
should not be used by the other components. To remove all built files, as well as the
configure.upp, type:

./clean

This is recommended if the compilation failed or if the source code has been changed.

For full details on the operation of UPP, see the UPP chapter of the HWRF Users Guide, and for
complete details on building and running the UPP, see the WRF-NMM User’s Guide, which can
be downloaded at:

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php

2.13 Building GSI
2.13.1 Background

The community GSI requires the same build environment as the WRF-NMM model, including
the netCDF , MPI, and LAPACK libraries. In addition, GSI makes direct calls to the WRF I/O
API libraries included with the WRF model. Therefore the WRF model must be built prior to
building the GSI.

Further details on using the GSI with HWRF can be found in later chapters of this HWRF Users
Guide.

 40

2.13.2 Configure and Compile

Building GSI for use with HWRF requires setting three environmental variables. The first, HWRF
indicates to turn on the HWRF options in the GSI build. This is the same flag set when building
WRF-NMM for HWRF. The second is a path variable pointing to the root of the WRF build
directory. The third is the variable LAPACK_PATH, which indicates the location of the LAPACK
library on your system.

To set up the environment for GSI, the environment variables can be set by typing (for csh/tcsh):

setenv HWRF 1
setenv WRF_DIR ${SCRATCH}/HWRF/WRFV3

For bash/ksh, the environment variables can be set by typing:

export HWRF=1
export WRF_DIR=${SCRATCH}/HWRF/WRFV3

The additional environment variable LAPACK_PATH may be needed on some systems.
Typically, the environment variable LAPACK_PATH needs only to be set on Linux systems
without a vender provided version of LAPACK. IBM systems usually have the ESSL library
installed and therefore do not need the LAPACK. Likewise, the PGI compiler often comes with a
vender-provided version of LAPACK that links automatically with the compiler. Problems with
the vender-supplied LAPACK library are more likely to occur with the Intel compiler. While the
Intel compilers typically have the MKL libraries installed, the ifort compiler does not
automatically load the library. It is therefore necessary to set the LAPACK_PATH variable to the
location of the MKL libraries when using the Intel compiler.

Supposing that the MKL library path is set to the environment variable MKL, then the LAPACK
environment for csh/tcsh is:

setenv LAPACK_PATH $MKL

for bash/ksh it is:

export LAPACK_PATH=$MKL

To build GSI for HWRF, change into the GSI directory and issue the configure command:

./configure

Choose one of the configure options listed. On Linux computers, the listed options are as follows.

1. Linux x86_64, PGI compilers (pgf90 & pgcc) (dmpar,optimize)
2. Linux x86_64, PGI compilers (pgf90 & pgcc), SGI MPT (dmpar,optimize)
3. Linux x86_64, PGI compilers (pgf90 & gcc) (dmpar,optimize)
4. Linux x86_64, Intel compiler, EMC OPTIONS (dmpar,optimize)
5. Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)
6. Linux x86_64, Intel compiler (ifort & icc), SGI MPT (dmpar,optimize)
7. Linux x86_64, Intel compiler (ifort & icc), IBM POE (dmpar,optimize)
8. Linux x86_64, Intel/gnu compiler (ifort & gcc) (dmpar,optimize)

 41

Select the appropriate “dmpar” option for your platform and compiler. For a generic Linux
machine, choose option (1) or (3) for a PGI build, or option (5) or (8) for an Intel build. On Jet,
select option (4) for an Intel build. For a SGI Linux installation, select (2) for PGI or (6) for Intel.
For an IBM Linux installation with an Intel compiler, select option (7).

After selecting the proper option, run the compile script (csh/tcsh):

./compile |& tee build.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee build.log

To conduct a complete clean that removes ALL built files in ALL directories, as well as the
configure.gsi, type:

./clean -a

A complete clean is strongly recommended if the compilation failed or if the configuration file is
changed.

Following the compile command, the GSI executable gsi.exe can be found in the run/ directory. If
the executable is not found, check the compilation log file to determine what went wrong. Other
tools, such as ssrc.exe, which is used to convert a binary data file’s endianness, can be found in
the util/test directory.

For details on using GSI with HWRF, see the GSI chapter in the HWRF Users Guide. For full
details on the operation of GSI, see the DTC Community GSI User’s Guide.

 http://www.dtcenter.org/com-GSI/users/docs/index.php

http://www.dtcenter.org/com-GSI/users/docs/index.php
http://www.dtcenter.org/com-GSI/users/docs/index.php

 42

Chapter 3: HWRF Preprocessing System

3.1 Introduction
In HWRF, GDAS forecasts of soil temperature and moisture in GRIB format are processed
through the WPS and real_nmm programs to provide lower boundary conditions. Preliminary
Initial Conditions (ICs) for the atmosphere are obtained by processing the GDAS spectral
forecasts in binary format through a utility called prep_hybrid, followed by real_nmm.

When inner core data will not assimilated (Figure 3.1), the GDAS 6-h forecast valid at the time of
HWRF initialization is processed. If the GDAS 6-h forecast is not available, the GFS 0-h forecast
can be used but in this case no data assimilation is performed. For information on running HWRF
with GFS initialization please contact the WRF help desk at wrfhelp@ucar.edu.

When inner core data are assimilated, background fields are needed at three time levels. These are
the GDAS 3-, 6-, and 9-h forecasts, valid at 3-h before the HWRF initialization, at the time of
HWRF initialization, and 3-h after HWRF initialization, respectively. This is required because the
inner core observations are taken in a time window centered on the HWRF initialization.
Throughout the HWRF scripts, array variable FGAT is used to define the number of hours,
counting from the HWRF initialization time, for which preprocessing needs to be conducted. For
example, in the operational configuration, FGAT=-3, 0, 3.

Most of this chapter focuses on the procedures to preprocess the global data for the case in which
inner core data assimilation is not employed. Information on preprocessing data for use with inner
core data assimilation is in Section 3.6. Note that, even when inner core data will not be
assimilated, the data preprocessing scripts will be called for the three time levels. However,
global model data will actually be preprocessed only for the HWRF initialization time.

The preliminary ICs are used to initialize two 90-second, uncoupled WRF forecasts. These runs,
termed “ghost” and “analysis”, are used to enhance the HWRF ICs with data assimilation and
vortex relocation procedures, which are discussed in Chapter 4.

In addition to preprocessing data for HWRF initialization, the prep_hybrid utility is used to
prepare data for lateral boundary conditions (LBCs). The LBCs used in the HWRF forecast are
obtained from the GFS forecast initialized at the same time as HWRF. Conversely, the LBCs
used in the ghost and analysis runs are obtained from the GFS forecast initialized 6 h before the
HWRF initialization. In both cases, the GFS is processed using prep_hybrid to create input to
real_nmm.

This Chapter explains how to run WPS and prep_hybrid for HWRF to create the preliminary
initial conditions. Prep_hybrid is a HWRF-specific tool that is distributed with the HWRF
Utilities. The WPS is a set of three programs whose collective role is to prepare input to the
real_nmm program for real data simulations or to the ideal program for idealized tropical cyclone
simulations. For general information about working with WPS, see the WRF-NMM
documentation at

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

mailto:wrfhelp@ucar.edu
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

 43

Figure 3.1 Diagram of the HWRF preprocessing procedures when hurricane inner-core
data assimilation is not conducted. The processes shown above the thick horizontal line
are described in this chapter.

3.2 How to Run the HWRF Preprocessing Using
Scripts

Five wrapper scripts are used to preprocess data for HWRF: hwrfdomain_wrapper,
geogrid_wrapper, prep_hybrid_wrapper, ungrib_wrapper and metgrid_wrapper. These wrapper
scripts drive the five corresponding low-level scripts, hwrfdomain.ksh, geogrid.ksh,
prep_hybrid.ksh, ungrib.ksh and metgrid.ksh, respectively. The script hwrfdomain.ksh defines the
location of the parent domain; geogrid.ksh interpolates static geographical data to the three
HWRF domains; prep_hybrid.ksh pre-process the GDAS or GFS spectral data on sigma vertical
levels for input to real_nmm; ungrib.ksh extracts meteorological fields from GRIB-formatted files
and writes the fields to intermediate files, and metgrid.ksh horizontally interpolates the
meteorological fields extracted by ungrib.ksh to the HWRF parent domain. The wrapper scripts
can be found in

${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts.

Before running the wrappers, users need to edit file ${SCRATCH}/HWRF/hwrf-
utilities/wrapper_scripts /global_vars.ksh and make sure that the list of global variables is
correctly customized for the desired HWRF run. In particular, make sure that variables
HWRF_DATA_DIR, HWRF_SRC_DIR, and HWRF_OUTPUT_DIR point to the customized
location of the input datasets, the HWRF source code, and the HWRF production directories,
respectively.

 44

String PATH_TO_GLOBAL can be found in each of the wrapper scripts. This string needs to be
substituted with the actual path to file global_vars.ksh in the user’s machine. To do that, it is
possible to manually edit each wrapper and substitute PATH_TO_GLOBAL with
${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts, where ${SCRATCH} should be expanded.
To facilitate this process, instead of doing the manual substitution, users can change to directory
${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts and type

make.

Note if the user wants a wrapper script to output detailed debug information in the standard
output (stdout), he can define an environment variable, DEBUG, in the wrapper script by adding
the following statement:

export DEBUG=1.

A diagram of the HWRF atmospheric initialization procedures when the inner-core data
assimilation is not carried out is shown in Figure 3.1. The objects drawn with solid lines show the
procedures covered in this chapter. Those drawn with dashed lines will be described in Chapter 4.
For information on the HWRF preprocessing procedures when HWRF inner-core data
assimilation is conducted, please see Section 3.6.

3.2.1 hwrfdomain_wrapper

Before running hwrfdomain_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
SID
START_TIME
TCVITALS
DOMAIN_DATA
RUN_GSI

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:

hwrfdomain_wrapper, which, in turn, will run the low-level script

hwrf-utilities/scripts/hwrfdomain.ksh.

Overview of script hwrfdomain.ksh:

1. Initialize the function library and check if all the environment variables are set.
2. Create working directory ${DOMAIN_DATA}/messages.
3. Create the tcvital and tcvitals.as files.
4. Get the storm center latitude and longitude from the TCVitals record.
5. Compute the reference latitude and longitude for the HWRF parent domain using

the storm center.
6. Test to make sure that the reference longitude is no more than 5 degrees away from

the storm center longitude.
7. Output the storm center to file storm.center.

 45

8. Output the center of the parent domain to file domain.center.
9. Check if GSI will run. GSI will run if the variable RUN_GSI is set to T in

global_vars.ksh.

Output files in directory ${DOMAIN_DATA}/messages

storm.center: file that contains the storm center latitude and longitude.
domain.center: file that contains the domain reference center latitude and longitude.
tcvital: file that contains the storm’s TCVital.
tcvital.as: file that contains the storm’s TCVitals.
go_gsi or no_gsi: file that indicates whether GSI will run (go_gsi) or not (no_gsi).

Status Check

If the five output files are found in the directory of ${DOMAIN_DATA}/messages, the wrapper
script hwrfdomain_wrapper and the low-level script hwrfdomain.ksh have finished successfully.

3.2.2 geogrid_wrapper

Before running geogrid_wrapper, check global_vars.ksh to make sure the following variables are
correctly defined (see Appendix).

HWRF_SCRIPTS
WPS_ROOT
DOMAIN_DATA
GEOGRID_CORES
FCST_LENGTH
FCST_INTERVAL
GEOG_DATA_PATH
HWRF_UTILITIES_ROOT
ATMOS_DOMAINS
IO_FMT
START_TIME
SID
MPIRUN

First use the qsub command to connect to the computer’s remote computation nodes (see Section
1.6). Note the number of processors the user should connect to is defined in global_vars.ksh as
GEOGRID_CORES.

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:

geogrid_wrapper, which, in turn, will run the low-level script

hwrf-utilities/scripts/geogrid.ksh.

Overview of script geogrid.ksh

1. Initialize the function library and check to see if all the environment variables are
set and the geogrid.exe executable exists.

2. Create working directory ${DOMAIN_DATA}/geoprd.

 46

3. Create the namelist and copy the geogrid table file.
4. Run geogrid.exe to generate the geographical data.

Output files in directory ${DOMAIN_DATA}/geoprd

geo_nmm.d01.nc: static geographical data for the parent domain, with grid spacing of
0.18 degrees.
geo_nmm_nest.l01.nc: static geographical data that covers the parent domain, with grid
spacing of 0.06 degrees.
geo_nmm_nest.l02.nc: static geographical data that covers the parent domain, with grid
spacing of 0.02 degrees.

Status check

If “Successful completion of program geogrid.exe” is found in the standard output files,
${DOMAIN_DATA}/geoprd/geogrid.log.*, the wrapper script geogrid_wrapper and the
low-level script geogrid.ksh have successfully finished.

3.2.3 prep_hybrid_wrapper

Before running prep_hybrid_wrapper, check global_vars.ksh and prep_hybrid_wrapper to make
sure the following variables are correctly defined (see Appendix).

HWRF_SCRIPTS
BKG_MODE
RUN_PREP_HYB
HWRF_UTILITIES_ROOT
DOMAIN_DATA
BC_TIME
START_TIME
GFS_SPECTRAL_DIR
IO_FMT
VERT_LEV
FHR_BKG

For the operational HWRF configuration, GDAS is used to generate ICs for the atmosphere,
while GFS is used to generate LBCs. The array variable FHR_BKG contains the times, specified
in number of hours after the HWRF initialization, for which prep_hybrid is run. Note that, in
wrapper prep_hybrid_wrapper, this variable is used twice. The first time it appears, it refers to
the processing of the GDAS and GFS forecasts initialized 6-h before the current HWRF
initialization. In this instance, FHR_BKG=0, 3 because initial and boundary conditions are only
generated up until 3 h for use in the 90-s ghost and analysis runs. The second time variable
FHR_BKG appears, it is set to 0, 6, …., 126 to create LBCs for the entire forecast length of the
HWRF run. This is passed to the low-level script hwrf-utilities/scripts/prep_hybrid.ksh as
BC_TIME.

In the operational HWRF configuration, variable BKG_MODE is set to GDAS in global_vars.ksh
to indicate that GDAS is used as the source of ICs. As stressed in Section 3.1, users that do not
have access to GDAS should contact the WRF help desk to obtain information about using

 47

alternate BKG_MODE. Note that in wrapper prep_hybrid_wrapper, variable BKG_MODE is
overwritten to GFS because even when using GDAS for ICs, the boundary conditions are
obtained from GFS.

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:

prep_hybrid_wrapper, which, in turn, will run the low-level script

hwrf-utilities/scripts/prep_hybrid.ksh.
Overview of script prep_hybrid.ksh

1. Initialize the function library and check to see if all the environment variables are
set and the hwrf_prep.exe executable exists.

2. Create working directories. For the operational HWRF configuration, those are
${DOMAIN_DATA}/prep_hybrid/${YYYYMMDDHH} (for the ICs) and
{DOMAIN_DATA}/prep_hybrid_GFS/ (for the LBCs).

3. Make sure there is a large enough stack.
4. Copy the input.
5. Run hwrf_prep.exe.
6. Link the output.

Output files in directory ${DOMAIN_DATA}/prep_hybrid/${YYYYMMDDHH}
hwrfinit_00: GDAS spectral data pre-processed by hwrf_prep.exe and ready to be used
by real_nmm to generate HWRF ICs.

hwrfbcs00_${bc_index}: GFS spectral data pre-processed by hwrf_prep.exe and ready to
be used by real_nmm to generate HWRF LBCs. The variable bc_index=0,1,..,21
corresponds to the 21 GFS forecast lead times that need to be pre-processed to create the
LBCs for the 126-h HWRF forecast.

Output files in directory ${DOMAIN_DATA}/prep_hybrid_GFS
hwrfinit_00: GFS spectral data pre-processed by hwrf_prep.exe and ready to be used by
real_nmm to generate HWRF ICs, only to be used when running a non-operational
configuration (BKG_MODE=GFS).

hwrfbcs00_${bc_index}: GFS spectral data pre-processed by hwrf_prep.exe and ready to
be used by real_nmm to generate HWRF LBCs.

Status check

If “Successful completion of program hwrf_prep.exe” is found in the standard output file,
${DOMAIN_DATA}/prep_hybrid/prep_hybrid.log, the wrapper script prep_hybrid_wrapper and
the low-level script prep_hybrid.ksh have successfully finished.

3.2.4 ungrib_wrapper

Before running ungrib_wrapper, check global_vars.ksh to make sure the following variables are
correctly defined (see Appendix).

HWRF_SCRIPTS
WPS_ROOT

 48

START_TIME
FCST_LENGTH
HWRF_UTILITIES_ROOT
DOMAIN_DATA
GFS_GRIDDED_DIR
FCST_INTERVAL
RUN_PREP_HYB
BKG_MODE
GFS_DATA_MODE
GDAS_GRIDDED_DIR
INNER_CORE_DA

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:

ungrib_wrapper, which, in turn, will run the low-level script

hwrf-utilities/scripts/ungrib.ksh.

Overview of script ungrib.ksh

1. Initialize the function library and check to see if all the environment variables are
set and the ungrib.exe executable exists.

2. Create and enter the work directory
${DOMAIN_DATA}/ungribprd/${YYYYMMDDHH}.

3. Create the namelist used by ungrib.exe.
4. Copy the ungrib table.
5. Link the GRIB files.
6. Run ungrib.exe.

Output files in directory ${DOMAIN_DATA}/ungribprd/${YYYYMMDDHH}

The intermediate files written by ungrib.exe will have names of the form FILE:YYYY-MM-
DD_HH (unless the prefix variable in namelist.wps was set to a prefix other than ’FILE’).

Status check

If “Successful completion of program ungrib.exe” is found in the standard output file, ungrib.log,
the wrapper script ungrib_wrapper and the low-level script ungrib.ksh have successfully finished.

3.2.5 metgrid_wrapper

Before running metgrid_wrapper, check global_vars.ksh to make sure the following variables are
correctly defined (see Appendix).

HWRF_SCRIPTS
WPS_ROOT
HWRF_UTILITIES_ROOT
DOMAIN_DATA
START_TIME
FCST_LENGTH

 49

FCST_INTERVAL
IO_FMT
ATMOS_DOMAINS
MPIRUN
RUN_PREP_HYB
METGRID_CORES

Next use the qsub command to connect to the computer’s remote computation nodes (see Section
1.6). Note the number of processors the user should connect to is defined in global_vars.ksh as
METGRID_CORES.

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:

metgrid_wrapper, which, in turn, will run the low-level script

hwrf-utilities/scripts/metgrid.ksh.

Overview of script metgrid.ksh

1. Initialize the function library and check to see if all the environment variables are
set and the metgrid.exe executable exists.

2. Create and enter work directory
${DOMAIN_DATA}/metgridprd/${YYYYMMDDHH}

3. Create the namelist used by metgrid.exe.
4. Copy the metgrid table.
5. Copy in the geogrid output files.
6. Copy in the ungrib output files.
7. Run metgrid.exe.

Output files in directory ${DOMAIN_DATA}/metgridprd/${YYYYMMDDHH}

met_nmm.d01.YYYY-MM-DD_HH:mm:ss.nc. Here, YYYY- MM-DD_HH:mm:ss refers to the valid
date of the interpolated data in each file.

Status Check

If “Successful completion of program metgrid.exe” is found in the standard output file,
${DOMAIN_DATA}/metgridprd/metgrid.log, the wrapper script metgrid_wrapper and the low-
level script metgrid.ksh have successfully finished.

3.3 Executables
3.3.1 geogrid.exe

FUNCTION:
interpolates static geographical data to the parent and nest grids.

INPUT:
Files in geographical static data directory ${GEOG_DATA_PATH}
GEOGRID.TBL

 50

WPS namelist

OUTPUT:
geo_nmm.d01.nc: static geographical data for the parent domain, with a grid spacing of
0.18 degrees.
geo_nmm_nest.l01.nc: static geographical data that covers the parent domain, with a grid
spacing of 0.06 degrees.
geo_nmm_nest.l02.nc: static geographical data that covers the parent domain, with a grid
spacing of 0.02 degrees.

USAGE:
${WPS_ROOT}/geogrid.exe

3.3.2 ungrib.exe

FUNCTION:
extracts meteorological fields from GRIB formatted files and writes the fields to
intermediate files.

INPUT:
GFS GRIB files
Vtable
WPS namelist

OUTPUT:
The intermediate files written by ungrib.exe will have names of the form FILE:YYYY-
MM-DD_HH (unless the prefix variable was set to a prefix other than ’FILE’ in WPS
namelist).

USAGE:
${WPS_ROOT}/ungrib.exe

3.3.3 metgrid.exe

FUNCTION:
horizontally interpolates the meteorological fields extracted by ungrib.ksh to the model
parent grid.

INPUT:
METGRID.TBL
geo_nmm.d01.nc
WPS namelist
intermediate files produced by ungrib.exe

OUTPUT:

 51

met_nmm.d01.YYYY-MM-DD_HH:mm:ss.nc. Here, YYYY- MM-DD_HH:mm:ss refers to
the valid date of the interpolated data in each file.

USAGE:
${WPS_ROOT}/metgrid.exe

3.3.4 hwrf_prep.exe

FUNCTION:
Pre-process the GDAS or GFS spectral data on vertical sigma levels in binary format for
use the by real_nmm or ideal programs

INPUT:
geogrid.out: link to geo_nmm.d01.nc
prep_hybrid.nl: prep_hybrid namelist
fort.11: link to gfsbc${bc_index}
fort.44: link to itime file contains bc_index
fort.45: link to domain.center
gfsbc${bc_index}: link to the global spectral file
[gdas1|gfs].${BKG_START_TIME}.sf${BKG_FCST_TIME}
Where $BKG_START_TIME is the GDAS or GFS initialization time and
$BKG_FCST_TIME is time the GDAS or GFS forecast lead time. For example to create
the 3-h LBCs for the ghost run associated with the HWRF forecast initialized at
2012102806, the GFS initialized 6-h previously is used, and these variables would be set
to:

● BKG_START_TIME = 2012102800
● BKG_FCST_TIME = 009

OUTPUT:
hwrfinit_00: GDAS or GFS spectral data pre-processed by hwrf_prep.exe and ready to be
used by real_nmm to generate HWRF initial conditions.
hwrfbcs00_${bc_index}: GDAS or GFS spectral data pre-processed by hwrf_prep.exe
and ready to be used by real_nmm to generate HWRF lateral boundary conditions.

USAGE:
${PREP_EXE} $NX1 $NY1 $VERT_LEV $DXX $DYY
where $NX1 $NY1 $VERT_LEV are the grid dimensions in the meridional, zonal and
vertical directions, and $DXX $DYY are the horizontal grid spacings.

3.4 Algorithm to Define the HWRF Domain Using
the Storm Center Location

In order to define the domain configuration for HWRF, ref_lat and ref_lon in the “geogrid”
namelist record are calculated according to the observed and predicted location of the storm to be
simulated. Script hwrfdomain.ksh reads the TCVitals records and retrieves the storm center

 52

location. NHC and JTWC are the two agencies that provide the TCVitals - a one line text
message that contains information on storm name, id, time, location, intensity, and 72-h forecast
position (if available) apart from many other parameters used to describe the storm.

In the first step, the storm center at the initial time (STORM_LAT and STORM_LON) is read
from the TCVitals file. If a 72-h forecast position is available, LATF72 and LONF72 are also
read in. The domain center is treated differently for latitude and longitude.

a) For domain center latitude (CENLA):

if STORM_LAT < 15.0 then CENLA=15.0
if 15.0 ≤ STORM_LAT ≤ 25.0 then CENLA=STORM_LAT
if 25.0 < STORM_LAT < 35.0 then CENLA=25.0
if 35.0 ≤ STORM_LAT < 40.0 then CENLA=30.0
if 40.0 ≤ STORM_LAT < 45.0 then CENLA=35.0
if 45.0 ≤ STORM_LAT < 50.0 then CENLA=40.0
if 50.0 ≤ STORM_LAT < 55.0 then CENLA=45.0
if STORM_LAT ≥ 55.0 then CENLA=50.0

b) For domain center longitude (CENLO):

The domain center longitude is the average of storm center (STORM_LON) and the 72-h
forecast longitude (LONF72). In the absence of 72-h forecast, 20 degrees are added to
STORM_LON to create LONF72.
CENTLO = (STORM_LON + LONF72)/ 2
To assure that the domain center is separated from the storm center by at least 5 degrees,
the following procedure is followed:
if CENLO > STORM_LON+5 then CENLO= STORM_LON + 5
if CENLO < STORM_LON- 5 then CENLO= STORM_LON - 5

Finally, the values of CENLA and CENLO are written to namelist.wps as ref_lat and ref_lon.

3.5 HWRF Domain Wizard
The WRF Domain Wizard has the capability of setting up the HWRF domain and running
geogrid. For more information about the WRF Domain Wizard, see

http://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html

3.6 Inner-Core Data Assimilation
In order to perform inner-core data assimilation, four prerequisites need to be met.

1. The following environment variables must be set.
a. RUN_GSI = T
b. INNER_CORE_DA =1
c. BKG_MODE = GDAS

2. The forecast must be cycled (no inner core data assimilation on cold starts).
3. The global model for preliminary ICs must be GDAS (BKG_MODE=GDAS).
4. A TDR BUFR file must exist for the time of HWRF initialization.

If these prerequisites are met, the preprocessing stages have to be run for two additional times
centered on the HWRF initialization time (Figure 3.2) to provide FGAT data for GSI as described

http://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html
http://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html

 53

in Section 4.1. These two extra preprocessing steps are windowed around the HWRF
initialization time by ±3 hours. The data is produced in directories named by using the valid time
for the preprocessed data. For example, if the HWRF initialization time is 2012102812,
preprocessing needs to be run for 2012102809, 2012102812 and 2012102815. In this case, the
ungrib output will be written to

● ${DOMAIN_DATA}/ungribprd/2012102809
● ${DOMAIN_DATA}/ungribprd/2012102812
● ${DOMAIN_DATA}/ungribprd/2012102815

Likewise, the metgrid output will be written to

● ${DOMAIN_DATA}/metgridprd/2012102809
● ${DOMAIN_DATA}/metgridprd/2012102812
● ${DOMAIN_DATA}/metgridprd/2012102815

And the prep_hybrid output will be produced in

● ${DOMAIN_DATA}/prep_hybrid/2012102809
● ${DOMAIN_DATA}/prep_hybrid/2012102812
● ${DOMAIN_DATA}/prep_hybrid/2012102815
● ${DOMAIN_DATA}/prep_hybrid_GFS

Note that the procedures at ±3 hours are simplified because only ICs are processed at those times.
The LBCs for the HWRF forecast are only generated once, using the GFS initialized at the same
time as the HWRF.

 54

Figure 3.2- part 1. Diagram of the HWRF preprocessing procedures when hurricane
inner-core data assimilation is conducted. The processes shown above the thick
horizontal line are described in this chapter. Part 1 refers to the processes at valid time 3
h before the HWRF initialization.

 55

Figure 3.2- part 2. Same as Fig 3.2 - part 1, except for processes valid at the time of
HWRF initialization.

 56

Figure 3.2- part 3. Same as Fig 3.2 - part 1, except for processes at valid time 3 h after
the HWRF initialization.

 57

Chapter 4: HWRF Atmospheric Initialization
4.1 Overview
HWRF’s atmospheric component, the WRF-NMM, needs ICs and LBCs to produce forecasts.
The GDAS forecasts are used to create the preliminary atmospheric fields, which are further
improved through the GSI data assimilation system and the vortex adjustment procedures to
provide the final IC. Most of this chapter focuses on the procedures to initialize HWRF for the
case in which inner core data assimilation is not employed (Figure 4.1). Information on
initializing HWRF for use with inner core data assimilation is in Section 4.5.

Figure 4.1 Diagram of the HWRF atmospheric initialization procedures without inner
core data assimilation. Processes shown below the thick horizontal line are described in
this chapter.

The vortex adjustment procedures are necessary because the initial vortex is often not realistically
represented in the preliminary ICs since it originates from a low-resolution global data source,
such as GDAS. Therefore, HWRF employs a sophisticated algorithm to adjust the vortex to
match the current time’s observed storm intensity, location and structure.

Program real_nmm is used to create the preliminary d01 ICs and LBCs from the output of
prep_hybrid and WPS’ metgrid program. The ICs created by real_nmm are a first guess for the
HWRF outer domain (d01). They are further modified by using GSI to assimilate observational
data, creating the d01 input to the vortex relocation procedure. The term HWRF Data
Assimilation System (HDAS) refers to the process of running GSI for data assimilation in

 58

HWRF. The fields obtained by running GSI on the HWRF parent domain are typically called
HDAS fields.

The data assimilation in HWRF is performed using the hybrid ensemble-variational method. This
indicates that the background error covariance information is a combination of two sources: a
static, pre-generated matrix for the global model, and a flow-dependent matrix derived from the
Global Ensemble Forecast System (GEFS) 6-h forecasts. Because the HWRF uses the GEFS
forecast but does not feedback onto the GEFS, this procedure is termed “one-way hybrid”. For
more information on the ensemble-variational method, refer to the HWRF v3.5a Scientific
Documentation available from the DTC website (www.dtcenter.org/HurrWRF/users). In the
operational HWRF, for the cases in which inner core observations are not assimilated, GSI is run
only in the parent domain. If desired, data assimilation can be completely turned off by setting
RUN_GSI=F in the global variable file global_vars.ksh.

Initial conditions for HWRF d02 and d03 are created by ingesting HDAS fields onto the HWRF
vortex initialization procedure. To prepare the fields for input in the vortex initialization, two 90-s
atmosphere-only forecasts are conducted. These runs are referred to as the WRF analysis and
WRF ghost runs, and their domains are detailed in Section 4.2.

The analysis runs use the same domain configuration as the HWRF forecast runs. The differences
between the two are the forecast length (analysis only runs for 90 s), coupling (analysis is
atmosphere-only) and initialization (analysis is initialized from HDAS). The WRF ghost run uses
the same parent domain as the HWRF forecast runs, but its d02 and d03 are larger. While the
ghost runs generate output on all three domains, only d03 is used. The ghost d03 is mainly used
as a first guess for high-resolution (0.02o) data assimilation. In the operational HWRF, when
inner core observations are not used, data assimilation is only performed in the parent domain
(0.18o). However, the ghost run is still performed and input to the vortex relocation procedures as
a placeholder.

The HWRF vortex relocation process has three possible stages, which are determined based on
the intensity of the observed storm and on the availability of the 6-h forecast of the previous
HWRF run (Figure 4.2). If the previous cycle HWRF forecast exists, and if the observed storm
intensity is equal to or greater than 16 ms-1, HWRF is run in cycled mode. In this case, the
previous HWRF cycle’s 6-h forecast vortex, adjusted according to the TCVitals, is used for
initializing the current cycle. If those conditions are not met, the HWRF initialization is a "cold
start".

For a cold start of storms with observed intensity less than 30 ms-1, the HDAS vortex is adjusted
and then used. Conversely, for storms with observed intensity equal to or greater than 30 ms-1, a
bogus vortex is used. A cycled run will go through all the three stages, while a "cold start" run
will go through stages 2 and 3 only.

Stage 1: The previous cycle 6-hr HWRF forecast is separated into environment fields and a storm
vortex. This step is run only for cycled cases.
Stage 2: The preliminary IC generated by real_nmm and the WRF ghost and analysis runs is
separated into environment fields and a storm vortex.
Stage 3: The storm vortex from the previous cycle’s 6-hr forecast (for cycled runs), from the
HDAS, or from the bogus vortex is adjusted to match the current time observed location, intensity
and structure provided by the NHC. Then the vortex and environment fields are combined.

 59

Figure 4.2a. Simplified flow diagram of the vortex initialization stages 1 and 2.

 60

Figure 4.2b. Simplified flow diagram of the vortex initialization stage 3.

 61

Since the vortex relocation stage 2 involves the removal of the cortex from the HDAS fields, it is
necessary for the location of the vortex in those fields to be known. To that effect, before the
vortex relocation, a procedure called “track analysis” is run. This entails running postprocessing
the WRF analysis runs using UPP (unipost.exe and copygb.exe) and the GFDL vortex tracker to
obtain the 0-h storm location.

After the three vortex relocation steps are finished, the adjusted IC for all domains are merged to
provide the final IC for the HWRF 5-day forecast (Figure 4.3). Note that even though one of the
input files to the merge process is called wrfghost_d02, this file is actually wrfghost_d03,
renamed. This nomenclature is a legacy of the 2011 configuration of HWRF, for which the
highest resolution domain was d02.

 62

Figure 4.3. Diagram of vortex initialization merge procedures. The color coding is
described in Figure 4.1.

4.2 Domains Used in HWRF
Figure 4.4 and Table 4.1 show the grids used in the HWRF forecast, data assimilation, and vortex
initialization process. The ghost, analysis and 3X domains are not used during the forecast model
integration — they are employed only in the HWRF initialization procedures

 63

Figure 4.4. The domains used in HWRF.

 D01 D02 D03

Grid spacing (deg) 0.18 0.06 0.02

HWRF Forecast 216x432 - 80ox80o 88x170 - 11ox10o 180x324 - 7.2ox6.5o

Analysis run 216x432 - 80ox80o 88x170 - 11ox10o 180x324 - 7.2ox6.5o

Ghost run 216x432 - 80ox80o 211x410 - 24ox24o 529x988 - 20ox20o

3X domain 748x1504 - 30ox30o

Table 4.1. Resolution, number of grid points, and size of the HWRF atmospheric grids.

Note that the 3X domain is used in the removal of the vortex from the HDAS fields during the
vortex adjustment. The domain is large enough so that the HDAS vortex is completely filtered
out, yet small enough to save computing resources.

The ocean model grid placement depends on the position of the observed and 72-h NHC forecast
of the observed storm. As an example, in Figure 4.4 the cyan box shows the “united” ocean
model domain grid, which is used in the forecast of hurricane Irene initialized at 12 UTC on 23
August 2011.

4.3 How to Run the HWRF Initialization Using
Scripts

The HWRF vortex initialization scripts come in the tarfile hwrfv3.5a_utilities.tar and, following
the procedures outlined in Chapters 1 and 2, will be expanded in the directories
${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts and ${SCRATCH}/HWRF/hwrf-
utilities/scripts.

Note the executables called in scripts real.ksh, wrf.ksh, gsi.ksh are parallel codes, and if they need
to be submitted with a batch system, the users are responsible for understanding the batch system

 64

commands for the machine and infrastructure where the HWRF system is run. For the batch
system commands for the LSF and MOAB/Torque systems, please see Section 1.6.

4.3.1 real_wrapper

Before running real_wrapper, check global_vars.ksh and real_wrapper to make sure the
following variables are correctly defined (see Appendix).

WRF_ROOT
HWRF_UTILITIES_ROOT
DOMAIN_DATA
IO_FMT
GFS_GRIDDED_DIR
HWRF_SCRIPTS
START_TIME
FCST_LENGTH
FCST_INTERVAL
ATMOS_DOMAINS
MPIRUN
REAL_CORES
BASIN
DTT
DYY
DXX
NX1
NY1
RUN_PREP_HYB
BKG_MODE

Next use the qsub command to connect to the computer’s remote computation nodes (see Section
1.6). Note the number of processors the user should connect to is defined in global_vars.ksh as
REAL_CORES.

Then run the wrapper script hwrf-utilities/wrapper_scripts/real_wrapper by typing the name of
the script in the terminal, which, in turn, will run the low-level script

hwrf-utilities/scripts/real.ksh.

Overview of script real.ksh:

1. Initialize the function library, and check if all the environment variables are set and
the executables real_nmm.exe, wgrib and hwrf_swcorner_dynamic.exe exist.

2. Create and enter the work directory realprd.
3. Link input and fix files.
4. Run hwrf_swcorner_dynamic.exe to calculate the nest domain location.
5. Generate the namelist.
6. Run real_nmm.exe to generate initial and boundary conditions. A high-resolution

sea-mask data file (fort.65) for the entire outer domain is also generated. It is later
used by the coupler.

 65

Note: to run real.ksh successfully, users should set the computer’s stacksize to be equal to or
larger than 2 GB. To do this:

In bash shell, use the command
ulimit –s 204800

In C-shell, use the command
limit stacksize 2048m

Output files in directory ${DOMAIN_DATA}/realprd/${YYYYMMDDHH}

wrfinput_d01: ICs created from GDAS
wrfbdy_d01: LBCs created from GFS for the ghost and analysis runs
fort.65: high-resolution sea mask data

Output files in directory ${DOMAIN_DATA}/realprd_GFS/${YYYYMMDDHH}:

wrfinput_d01: ICs created from GFS
wrfbdy_d01: LBCs created from GFS for the HWRF forecast
fort.65: high-resolution sea mask data

Status Check

This step was successfully finished if the user finds “SUCCESS COMPLETE REAL_NMM
INIT” in files rsl.*

4.3.2 gsi_wrfinput_wrapper

Before running gsi_wrfinput_wrapper, check global_vars.ksh and gsi_wrfinput_wrapper to make
sure the following variables are correctly defined (see Appendix).

START_TIME
CYCLE_DATA
DOMAIN_DATA
GFS_GRIDDED_DIR
GSI_ROOT
GSI_CORES
MPIRUN
HWRF_UTILITIES_ROOT
DOMAIN
SID
IO_FMT
GDAS_OBS_DIR
GFS_OBS_DIR
GSI_FIXED_DIR
GSI_CRTM_FIXED_DIR
GEFS_ENS_FCST_DIR
RUN_GSI
STORM_NAME
BKG_MODE

 66

GSI_ENS_REG
GSI_ENS_REG_SIZE
GSI_ENS_REG_OPT
GSI_USE_RAD

Note that in the operational HWRF radiances are not assimilated, so global_vars.ksh has
GSI_USE_RAD=F. If radiance assimilation is desired, this variable can be set to T.

Next use the qsub command to connect to the computer’s remote computation nodes (see Section
1.6). Note the number of processors the user should connect to is defined as GSI_CORES.

Then run the wrapper script gsi_wrfinput_wrapper, which in turn will run the low-level script
gsi.ksh, on the parent domain.

Overview of script gsi.ksh

1. Initialize the function library and check if all the environment variables are set and
the executables exist.

2. Create and enter the work directory.
3. Flag the observational data near the storm center so it is not assimilated.
4. Copy the fixed data and background analysis to the working directory.
5. Create a namelist for GSI analysis.
6. Copy the ensemble data to the working directory, if GSI_ENS_REG is set to T.
7. Run the executable gsi.exe

Output files in directory ${DOMAIN_DATA}/gsiprd/wrfinput/

stdout:
Standard text output file. It is the file most often used to check the GSI analysis processes
as it contains basic and important information about the analyses.
wrf_inout:
Analysis results - the format is same as the input background file.

Status Check:

If you see “PROGRAM GSI_ANL HAS ENDED” in the file stdout, the script gsi.ksh has run
successfully.

For more information on checking GSI output, refer to the GSI User’s Guide
(http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.2.pdf).

4.3.3 wrfanalysis_wrapper

Before running wrfanalysis_wrapper, check global_vars.ksh and wrfanalysis_wrapper to make
sure the following variables are correctly defined (see Appendix).

WRF_ROOT
HWRF_UTILITIES_ROOT
DOMAIN_DATA
START_TIME
FCST_LENGTH

http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.2.pdf

 67

FCST_INTERVAL
WRF_MODE
IO_FMT
ATMOS_DOMAINS
MPIRUN
WRF_ANAL_CORES
BASIN
DTT
DYY
DXX
NX1
NY1
VERT_LEV
BKG_MODE

Note that in the wrapper script wrfanalysis_wrapper, the following variable is defined and should
not be altered.

WRF_MODE = analysis

Next, use the qsub command to connect to the computer’s remote computation nodes (see 1.6).
Note the number of processors the user should connect to is defined by WRF_ANAL_CORES .

Then run the wrapper script hwrf-utilities/wrapper_scripts/wrfanalysis_wrapper, which, in turn,
will run the low-level script hwrf-utilities/scripts/wrf.ksh. This will make a 90-s run of wrf.exe
and generate an analysis output for the middle and inner nest domains.

Overview of script wrf.ksh
1. Initialize the function library, and check if all the environment variables are set and

the wrf.exe and hwrf_swcorner_dynamic.exe executables exist.
2. Create and enter the work directory wrfanalysisprd.
3. Link the fix data, initial condition and boundary conditions.
4. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for the

middle nest domain grid and create a namelist.input file.
5. Run wrf.exe.

Output files in the directory ${DOMAIN_DATA}/wrfanalysisprd/${YYYYMMDDHH}

"wrfanl_d02*" and "wrfanl_d03*" are two "analysis" files for the HWRF middle and inner nest
domains.

Status Check

This step was successfully finished if the user finds “SUCCESS COMPLETE WRF” in files
rsl.*.

 68

4.3.4 wrfghost_wrapper

Before running wrfghost_wrapper, check global_vars.ksh to make sure the following variables
are correctly defined (see Appendix).

WRF_ROOT
HWRF_UTILITIES_ROOT
DOMAIN_DATA
START_TIME
FCST_LENGTH
FCST_INTERVAL
WRF_MODE
IO_FMT
ATMOS_DOMAINS
MPIRUN
WRF_GHOST_CORES
BASIN
DTT
DYY
DXX
NX1
NY1
VERT_LEV
BKG_MODE

Note that in the wrapper script wrfghost_wrapper, the following variable is defined and should
not be altered.

WRF_MODE = ghost

Next use the qsub command to connect to the computer’s remote computation nodes (see Section
1.6). Note the number of processors the user should connect to is defined as
WRF_GHOST_CORES.

Then run the wrapper script hwrf-utilities/wrapper_scripts/wrfghost_wrapper by typing the name
of the wrapper script, which, in turn, will run the low-level script hwrf-utilities/scripts/wrf.ksh.

This will make a 90-s run of wrf.exe and generate output for the middle and inner “ghost”
domains (see Figure 4.3). The ghost d03 domain is primarily used in the assimilation of inner
core data (see Section 4.5), but it must be run as a placeholder even when inner core data is not
available.

Overview of script wrf.ksh
1. Initialize the function library, and check if all the environment variables are set and

the wrf.exe and hwrf_swcorner_dynamic.exe executables exist.
2. Create and enter the work directory wrfghostprd.
3. Link the fix data, initial condition, and boundary conditions.
4. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for the

middle “ghost” domain grid and create a namelist.input file.

 69

5. Run wrf.exe.

Output files in the directory ${DOMAIN_DATA}/wrfghostprd/${YYYYMMDDHH}

 "ghost_d02*" and "ghost_d03*", two “analysis” files for the HWRF middle and inner
“ghost” domains.

Status Check

This step was successfully finished if the user finds “SUCCESS COMPLETE WRF” in files rsl.

4.3.5 track_analysis_wrapper

Before running track_analysis_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_UTILITIES_ROOT
UPP_ROOT
TRACKER_ROOT
DOMAIN_DATA
START_TIME
SID
UNI_CORES
IO_FMT
ATMOS_DOMAINS
MPIRUN
FHR

Then run track_analysis_wrapper by typing the name of the wrapper script, which, in turn, will
run the low-level script track_analysis.ksh. This script will run unipost.exe and copygb.exe to
interpolate the WRF analysis run (Section 4.3.3) wrfout_d01 horizontally to a regular lat/lon grid
and vertically to isobaric levels, and to output a file in GRIB format. Then the GFDL vortex
tracker is run to identify the center of the storm (see Figure 4.5).

Overview of script track_analysis.ksh

1. Initialize the function library, and check if all the environment variables are set and
the executables exist.

2. Create the work directory, enter it, and copy the unipost fix files and the
wrfout_d01 file from the WRF analysis 90-s run.

3. Run hwrf_wrfout_newtime.exe to change the timestamp in this 90-s wrfout_d01 to
t=0. This is needed because the GFDL vortex tracker requires tracking from the
beginning of the forecast.

4. Run unipost.exe to post-process the wrfout_d01 file.
5. Run copygb.exe to horizontally interpolate the unipost.exe output to a regular

lat/lon grid.
6. Run the GFDL vortex tracker.

Output files in directory ${DOMAIN_DATA}/trkanalysisprd/${YYYYMMDDHH}

gfs-anl-fix.atcfunix (storm center at initial time in the WRF analysis run output)

 70

Status Check:

If “failed” is not found in the standard output (stdout) and file gfs-anl-fix.atcfunix exists, the
wrapper script track_analysis_wrapper and the low-level script track_analysis.ksh runs were
successful.

Figure 4.5. Diagram of the procedure to generate information about the position of the
storm in the GDAS input data. The color coding is described in Figure 4.1, with the
addition of orange which represents ASCII files.

 71

4.3.6 relocate1_wrapper

Before running relocate1_wrapper, check global_vars.ksh to make sure the following variables
are correctly defined (see Appendix):

HWRF_SCRIPTS
HWRF_UTILITIES_ROOT
DOMAIN_DATA
CYCLE_DATA
START_TIME
IO_FMT
FCST_INTERVAL
FCST_LENGTH
RUN_PREP_HYB
ATCFNAME
SID
MPIRUN
BASIN
INNER_CORE_DA

Then run the wrapper script relocate1_wrapper by typing its name on the terminal, which, in
turn, will run the low-level script relocate_stage1_3d.ksh. If a previous 6-hr forecast exists and
the observed storm maximum wind speed is greater than 16 ms-1 (a cycled run), the previous
forecast will be interpolated onto the 3X domain and separated into environment fields and storm
vortex fields. The storm vortex fields will be adjusted. The 3X domain is approximately 30ox30o,,
has the resolution of the inner nest domain, and is centered based on the NHC storm message data
(see Figure 4.4). Be aware that the 3X (30ox30o) domain is sometimes referred to in the source
code or in executable names as the 4X domain. This is a legacy from the 2011 configuration of
HWRF in which this domain had 40x40o dimensions.

Overview of script relocate_stage1_3d.ksh

1. Initialize the function library and check if all the environment variables are set and
the executables exist.

2. Create the work directory, enter it and copy fixed files and namelist.
3. Check if the previous cycle forecast exists and the storm intensity is greater than 16

ms-1; if not, exit.
4. Run diffwrf_3dvar.exe to convert the previous cycle forecast output wrfout_d01,

wrfout_d02 and wrfout_d03 into unformatted data files old_hwrf_d01,
old_hwrf_d02 and old_hwrf_d03 respectively.

5. Run merge_nest_4x_step12_3n.exe to merge wrfout_d01, wrfout_d02 and
wrfout_d03 onto 3X domain and produce a file containing the merged data:
data_4x_hwrf.

6. Run hwrf_create_trak_guess.exe to produce a guess track (0,3,6,9 hour) for the
current forecast using previous cycle forecast track.

7. Run wrf_split1.exe to separate data_4x_hwrf into two parts: an environment field
(wrf_env) and a storm vortex (storm_pert). A storm radius data file (storm_radius)
is also generated.

 72

8. Run hwrf_pert_ct1.exe to do adjustments to storm_pert. The new storm vortex
data (storm_pert_new) as well as two files containing the storm size information
(storm_size_p) and the symmetric part of the vortex (storm_sym) are generated.

Output files in directory ${DOMAIN_DATA}/relocateprd/${YYYYMMDDHH}/stage1

storm_size_p (storm size information)
storm_pert_new (new storm vortex after adjustments by hwrf_pert_ct.exe)
storm_sym (symmetric part of the vortex)
storm_radius (storm radius information)
wrf_env (environment field)

Status Check:

If “failed” is not found in the standard output (stdout) and the files listed above exist, the wrapper
script relocate1_wrapper and the low-level script relocate_stage1_3d.ksh runs were successful.

4.3.7 relocate2_wrapper

Before running relocate2_wrapper, check global_vars.ksh to make sure the following variables
are correctly defined (see Appendix).

HWRF_UTILITIES_ROOT
DOMAIN_DATA
START_TIME
SID
BASIN
FCST_INTERVAL
IO_FMT
ATMOS_DOMAINS
GFS_GRIDDED_DIR
BKG_MODE
RUN_GSI
RUN_GSI_WRFINPUT
INNER_CORE_DA

Then run the wrapper script relocate2_wrapper by typing its name in the terminal. This will
merge the outer nest, inner nest, and ghost nest domain initial fields onto the 3X domain grid. The
merged fields will be separated into environment fields and storm vortex.

Overview of script relocate_stage2.ksh

1. Initialize the function library and check if all the environment variables are set and
the executables exist.

2. Enter the work directory and copy needed fix files and namelist.
3. Run diffwrf_3dvar.exe to convert wrfinput_d01, wrfanl_d02, wrfanl_d03 and

wrfghost_d02 (copied from wrfghost_d03) into binary files new_gfs_d01,
new_gfs_d02, new_gfs_d03 and new_ght_d02, respectively.

 73

4. Run hwrf_create_nest_1x_10m.exe to rebalance the inner nest domain data. This
will generate the data file new_gfs_d01 that contains the rebalanced outer and inner
domain data.

5. Run hwrf_create_trak_fnl.exe to create trak.fnl.all_gfs, a guess track file from
atcfunix.

6. For example, for a forecast of hurricane Sandy starting at 06 UTC on 10/28/2012,
the storm ID is 18L, file atcfunix shows the following storm information:

AL, 18, 2012102806, 03, HWRF, 000, 316N, 737W, 40, 962, XX, 34, NEQ, 0350,

0332, 0308, 0327, 0, 0, 108
AL, 18, 2012102806, 03, HWRF, 000, 316N, 737W, 40, 962, XX, 50, NEQ, 0000,

0000, 0201, 0000, 0, 0, 108

and the guess track file should be in the following form:

 72HDAS121028 6 316 737 316 737 316 737 316 737 0 0 0 0 0 0 18L

where '72HDAS' is a fixed field, 121028 6 means 10/28/2012 06 UTC, 316 and 737 are

the latitude and longitude multiplied by 10 (31.6N and 73.7W), and 18L is the storm
ID.

1. Run hwrf_merge_nest_4x_step12_3n.exe to merge inner domain (new_gfs_d03) ,
middle domain (new_gfs_d02), and outer domain (new_gfs_d01) onto the 3X
domain. This will generate the file containing the merged data on the 3X domain
(data_4x_gfs) and a file containing sea mask and roughness length data
(roughness2).

2. Run hwrf_split1.exe to separate the data_4x_gfs into environment data (gfs_env)
and storm vortex (storm_pert_gfs). A file containing the storm's radius information
will be generated too (storm_radius_gfs).

Output files in the directory ${DOMAIN_DATA}/relocateprd/${YYYYMMDDHH}/stage2

gfs_env : environment fields from GFS data
roughness2: sea mask and roughness length from GFS data
storm_pert_gfs: storm vortex from GFS data
storm_radius_gfs: storm radius information from GFS data

Status Check:

If “failed” is not found in the standard output (stdout) and the files listed above exist, the wrapper
script relocate2_wrapper and the low-level script relocate_stage2.ksh runs were successful.

4.3.8 relocate3_wrapper

Before running relocate3_wrapper, check global_vars.ksh to make sure the following variables
are correctly defined (see Appendix).

HWRF_UTILITIES_ROOT
DOMAIN_DATA
START_TIME

 74

SID
FCST_INTERVAL
IO_FMT
ATMOS_DOMAINS
GFS_GRIDDED_DIR
CYCLE_DATA
MPIRUN
BASIN
BKG_MODE
INNER_CORE_DA

Then run the wrapper script relocate3_wrapper by typing its name in a terminal, which in turn
will run the low-level script relocate_stage3_3d.ksh. This will create a new storm vortex by
adjusting the previous cycle 6-hr forecast vortex (for a cycled run) or the HDAS or bogus vortex
(for a cold start) to match the observed storm location, intensity and structure.

Overview of script relocate_stage3_3d.ksh:

1. Initialize the function library and check if all the environment variables are set and
the executables exist.

2. Enter the work directory.
3. For cold start runs (previous cycle 6-hr forecast does not exist or the observed

storm’s maximum wind is less than 12 ms-1), run hwrf_anl_bogus_10m.exe to
create a bogus storm and add into the environmental flow on the 3X domain grid.
This will generate new_data_4x.

4. For cycled runs (previous cycle 6-hr forecast exists and the storm’s maximum wind
is larger than or equal to 16 ms-1),
d. Run hwrf_anl_4x_step2.exe to adjust the storm vortex obtained in stage

1 (storm_pert_new) and add the new storm vortex to the environment
flow (gfs_env) on the 3X domain grid. This will produce a new file
(new_data_4x) containing the combined environment flow and the
adjusted storm vortex.

e. If the maximum wind speed of the combined vortex + environmental
flow is less than the observed one, discard the file new_data_4x
generated in step 2 and run hwrf_anl_cs_10m.exe to further adjust the
vortex. This will produce a new version of new_data_4x that contains
the combined environment flow and the adjusted storm vortex.

5. Run hwrf_inter_4to6.exe to interpolate the new_data_4x from the 3X domain onto
the outer domain grid. This will produce the new data_merge_d01. In this step, the
only difference between cold start and cycled runs is that for the storm radius
information, the file storm_radius is used for cycled runs and storm_radius_gfs is
used for cold start runs.

6. Run hwrf_inter_4to2.exe to interpolate the new_data_4x from the 3X domain onto
the ghost domain grid. This will produce the new data_merge_2x.

7. Run diffwrf_3dvar.exe to convert the unformatted data_merge_d01 to the netCDF
file wrfinput_d01.

8. Run diffwrf_3dvar.exe to convert the unformatted data_merge_2x to the netCDF
file wrfghost_d02.

 75

9. Decide if GSI will be run based on environmental variable set by the user. By
default, GSI I is run for all storms as in the 2012 operational implementation.

Output files in the directory ${DOMAIN_DATA}/relocateprd/${YYYYMMDDHH}/stage3

wrfinput_d01: Adjusted parent domain fields that contains both the vortex and the
environment
wrfghost_d02: Adjusted ghost domain fields that contains both the vortex and the
environment

Status Check:

If “failed” is not found in the standard output (stdout) and the files listed above exist, the script
relocate3_wrapper run was successful.

4.3.9 gsi_wrfghost_wrapper

Only when performing inner-core data assimilation to use TDR observations, it is necessary to
run gsi_wrfghost_wrapper to perform the GSI analysis in the high-resolution ghost domain.
When using gsi_wrfghost_wrapper, it should be run before merge_wrapper. Detailed information
about TDR assimilation can be found in Section 4.5.

Wrapper gsi_wrfghost_wrapper is similar to wrapper gsi_wrfinput_wrapper detailed in Section
4.3.2., with the exception that variable DOMAIN should be set to wrfghost.

4.3.10 merge_wrapper

Before running merge_wrapper, check global_vars.ksh to make sure the following variables are
correctly defined (see Appendix).

HWRF_UTILITIES_ROOT
DOMAIN_DATA
CYCLE_DATA
BASIN
START_TIME
SID
IO_FMT
ATMOS_DOMAINS
FCST_INTERVAL
RUN_GSI
RUN_GSI_WRFINPUT
RUN_GSI_WRFGHOST

Then run the wrapper script merge_wrapper by typing its name in a terminal, which in turn will
run the low-level script merge.ksh. If the GSI analysis was run, as it should in the HWRF
operational configuration, this will update the HWRF initial conditions using the GSI analysis. If
the GSI analysis was not run, the initial conditions are created from the vortex relocation stage 3.

Overview of script merge.ksh:

Initialize the function library and check if all the environment variables are set and the
executables exist.

 76

1. Create and enter the work directory.
2. Copy the input analysis files. If GSI was run, the input files for the parent and

ghost domains will be from the GSI output in the directory gsiprd, otherwise they
will be from the relocation stage 3 output in the directory relocateprd. The input
analysis file for the 3rd domain will be from the directory relocateprd.

3. Copy the namelist.
4. Run diffwrf_3dvar.exe to convert the netCDF format wrfinput_d01, wrfinput_d02,

wrfinput_d03, and wrfghost_d02 to unformatted data files new_hdas_d01,
new_gfs_d02, new_gfs_d03, and new_ght_d02, respectively.

5. Run hwrf_inter_2to6.exe to interpolate the files new_hdas_d01, new_gfs_d02, and
new_ght_d02 to the outer domain grid. This will produce the merged data on the
outer domain grid (data_merge_d01).

6. Run hwrf_inter_2to1.exe to interpolate the data in file new_ght_d02 and
new_gfs_d03 to the inner nest domain grid. This will produce the merged data on
the inner nest grid (data_merge_d03).

7. Run hwrf_inter_2to2.exe to interpolate the data in file new_ght_d02, new_gfs_d02,
and new_hdas_d01 to the middle nest domain grid d02. This will produce the
merged data on the inner nest grid (data_merge_d02).

8. Run diffwrf_3dvar.exe to convert the unformatted files data_merge_d01,
data_merge_d02, and data_merge_d03 to the netCDF format files wrfinput_d01,
wrfinput_d02, and wrfinput_d03, respectively.

9. Rename wrfinput_d02 and wrfinput_d03 to wrfanl_d02 and wrfanl_d03
respectively.

10. wrfinput_d01, wrfanl_d02 and wrfanl_d03 are ready to be used by wrf.exe to do the
hurricane forecast.

Output files in the directory ${DOMAIN_DATA}/mergeprd

wrfinput_d01: initial condition for the outer domain containing the new vortex
wrfanl_d02_${YYYY-MM-DD_HH}:00:00: initial condition for the middle nest domain
containing the new vortex. ${YYYY-MM-DD} is the model run’s initial time.
wrfanl_d03_${YYYY-MM-DD_HH}:00:00: initial condition for the inner nest domain
containing the new vortex. ${YYYY-MM-DD_HH} is the model run’s initial time.

Status Check:

If you do not see “failed” in the file stdout and the above mentioned output files are generated,
the wrapper script merge_wrapper and the low-level script merge.ksh have run successfully.

4.4 HWRF Initialization Executables
4.4.1 copygb.exe

See Section 7.4.2.

 77

4.4.2 diffwrf_3dvar.exe

FUNCTION:
Converts netCDF input to unformatted file (when first argument is "storm_relocate").

INPUT:
netCDF format input files (for example wrfinput_d01) or previous cycle 6-hr forecast.

OUTPUT:
unformatted data file.

USAGE:
diffwrf_3dvar.exe storm_relocate input_file flnm3 output_file
The command above writes the WRF input file input_file into an unformatted file,
output_file, which will be used in the vortex relocation procedures.

FUNCTION:
Updates existing netCDF file with new unformatted file (when first argument is
"3dvar_update").

INPUT:
Unformatted file containing new vortex fields.

OUTPUT:
Updated netCDF file.

USAGE:
 diffwrf_3dvar.exe 3dvar_update input_file output_file

The command above updates input_file with unformatted file output_file, which contains
new vortex fields.

4.4.3 get_trk.exe

See Section 8.6.1.

 4.4.4 gsi.exe

FUNCTION:
Performs the GSI 3D-VAR data assimilation analysis.

INPUT:
gsiparm.anl: gsi namelist, created by by script gsi.ksh by modifying template
${HWRF_UTILITIES_ROOT}/parm/gsi_namelist.input
filelist: ASCII file with 80 lines, each one containing a file name for a GEFS ensemble
member (used for ensemble-based background covariance)
satbias_angle: file containing information on satellite angle, from dataset directory
GDAS/obs

 78

satbias_in: file containing information on satellite bias, from dataset directory GDAS/obs
wrf_inout: background file, copied from ${BK_DIR}
prepbufr: conventional observation prepBUFR data, linked to ${PREPBUFR}.
tldplrbufr: TDR observations (if using)

fix files, from ${GSI_FIXED_DIR}, which is specified in hwrf-
utilities/wrapper_scripts/global_vars.ksh

GEFS 6-h forecast initialized 6-h before current HWRF cycle for all 80 members (80
files)

GEFS 80-member forecast

OUTPUT:
wrf_inout: analysis results if GSI completes successfully. The format is the same as the
background file.

USAGE:
 On machines with LSF: mpirun.lsf -procs 12 ./gsi.exe < gsiparm.anl
 On machines with MOAB/Torque: mpiexec –np 12 ./gsi.exe < gsiparm.anl

4.4.5 hwrf_anl_4x_step2.exe

FUNCTION:
Adjusts the storm vortex obtained in stage 1 (storm_pert_new) and adds the new storm
vortex to the environment flow (gfs_env) on the 3X domain grid.

INPUT:
 $gesfhr(=6)
 storm_size_p (fort.14) - input from stage 1
 tcvitals.as (fort.11) - storm center obs

hdas_atcfunix (fort.12) - input track file from previous 6-hr forecast
storm_sym (fort.23) - symmetric part of storm
gfs_env (fort.26) - GFS environmental flow
roughness1 (fort.46) - roughness from merge_nest_4x_step2
storm_pert_new (fort.71) - adjusted storm perturbation from stage 1

OUTPUT:
 wrf_env_new (fort.36) - new environmental flow.

 new_data_4x (fort.56) - adjusted field on 3X domain.

USAGE:
echo $gesfhr $BASIN 0 1 | hwrf_anl_4x_step2.exe

 79

4.4.6 hwrf_anl_bogus_10m.exe

FUNCTION:
Creates a bogus storm and adds it to the environmental flow

INPUT:
$gesfhr(=6)
tcvitals.as (fort.11) – observed storm center
gfs_env (fort.26) - GFS environmental flow
data_4x_gfs (fort.36) - merged GFS inner/outer domain data
roughness2 (fort.46) - roughness info for boundary layer calculation
storm_pert_gfs (fort.61) - separated GFS 3D vortex field
storm_radius_gfs (fort.85)
hwrf_storm_cyn_axisy_47 (fort.71,72,73,74,75,78) input static vortex data
hwrf_storm_20 (fort.76, 77) input static vortex data

OUTPUT:

new_data_4x: combined environment flow and bogus field on the 3X domain

USAGE:
echo $gesfhr $BASIN | hwrf_anl_bogus_10m.exe

4.4.7 hwrf_anl_cs_10m.exe

FUNCTION:
Further adjusts the storm vortex when combined vortex + environmental flow is less than
the observed maximum wind speed.

INPUT:
 $gesfhr (=6)
 tcvitals.as (fort.11) – observed storm center
 wrf_env_new (fort.26) - new environmental flow (from hwrf_anl_4x_step2)
 storm_sym (fort.23) - symmetric part of storm (from stage 1)
 roughness (fort.46) - roughness info for boundary layer calculation

(from hwrf_merge_nest_4x_step2.exe)
storm_radius (fort.85) (from stage 1)
hwrf_storm_cyn_axisy_47 (fort.71,72,73,74,75,78) input static vortex data
hwrf_storm_20 (fort.76, 77) input static vortex data

OUTPUT:
new_data_4x (fort.56) - adjusted field on 3X domain when combined vortex +
environmental flow is less than the observed maximum wind speed - replaces previous
file.

USAGE:

 80

 echo $gesfhr $BASIN | hwrf_anl_cs_10m.exe

4.4.8 hwrf_create_nest_1x_10m.exe

FUNCTION:
Rebalances inner nest data.

INPUT:
 $gesfhr(=6) is used to generate the input and output file unit numbers.
 new_gfs_d02 (fort.46)
 new_gfs_d01 (fort.26)

OUTPUT:
new_data_d01(fort.57)- outer domain data interpolated to inner domain. new_data_d01,
which is renamed to new_gfs_d01

USAGE:

echo $gesfhr $BASIN | hwrf_create_nest_1x_10m.exe

4.4.9 hwrf_create_trak_guess.exe

FUNCTION:

 Guesses storm center from previous 6-hr forecast position.

INPUT:
$storm_id (storm ID)
$ih (model initial hour)
tcvitals.as (fort.11) – observed storm center
hdas_atcfunix (fort.12) – track file from previous cycle 6-hr forecast.

OUTPUT:
trak.fnl.all (fort.30) - storm center guess (at 0, 3, 6, 9 h)

USAGE:
echo $storm_id $ih $BASIN | hwrf_create_trak_guess.exe

4.4.10 hwrf_data_flag.exe

FUNCTION:
Flags the observational data near storm center so it is not assimilated

INPUT:
fort.21 (prepbufr.ALL), the prepBUFR data before the observations are removed near the
storm center
RLATC: storm center latitude

 81

RLONC: storm center longitude
RRADC(=1200 km): radius within which data will be removed

OUTPUT:
fort.51: prepbufr, the prepBUFR data after the observations are removed near the storm
center.

USAGE:
./hwrf_data_flag.exe > data_flag.out

4.4.11 hwrf_inter_2to1.exe

FUNCTION:
Interpolates from ghost d03 domain to inner nest domain.

INPUT:
 $gesfhr(=6)
 new_ght_d02 (fort.26) - data on ghost d03 domain.
 new_gfs_d03 (fort.36) – data on inner nest domain.

OUTPUT:
 data_merge_d03 (fort.56) - interpolated data on inner domain.

USAGE:
 echo ${gesfhr} $BASIN | hwrf_inter_2to1.exe

4.4.12 hwrf_inter_2to2.exe

FUNCTION:
Interpolates from ghost d03 domain to middle nest domain.

INPUT:
 $gesfhr(=6)
 new_ght_d02 (fort.26) - data on ghost d03 domain.
 new_gfs_d02 (fort.36) – data on middle nest domain.
 new_hdas_d01 (fort.46) – data on outer domain.

OUTPUT:
data_merge_d02 (fort.56) - interpolated data on middle nest domain.

USAGE:
 echo ${gesfhr} $BASIN | hwrf_inter_2to2.exe

 82

4.4.13 hwrf_inter_2to6.exe

FUNCTION:
Interpolates data from ghost domain to outer domain.

INPUT:
$gesfhr (=6)
new_gfs_d02 (fort.26) – data on HWRF middle nest grid
new_ght_d02 (fort.36) - data on ghost d03 grid
new_hdas_d01 (fort.46) – data on outer domain grid
storm_radius (fort.85) - storm radius obtained from wrf_split1 in either stage 1 (cycled
run) or stage 2 (cold start)

OUTPUT:
 data_merge_d01 (fort.56) - interpolated data on outer domain.

USAGE:
 echo $gesfhr $BASIN | hwrf_inter_2to6.exe

4.4.14 hwrf_inter_4to2.exe

FUNCTION:
Interpolates from 3X domain onto ghost d02 domain.

INPUT:
$gesfhr (=6)
tcvitals.as (fort.11) - storm center obs
new_data_4x (fort.26) - adjusted storm on 3X domain
new_ght_d02 (fort.36) - ghost middle domain data

OUTPUT:
data_merge_2x (fort.56) - merged data on ghost d02 domain.

USAGE:
echo $gesfhr $BASIN | hwrf_inter_4to2.exe

4.4.15 hwrf_inter_4to6.exe

FUNCTION:
Interpolates from 3X domain onto outer domain.

INPUT:
 $gesfhr
 tcvitals.as (fort.11) – observed storm center
 new_gfs_d01 (fort.26) - outer domain adjusted GFS data
 new_data_4x (fort.36) - adjusted storm

 83

 new_gfs_d01 (fort.46) - outer domain adjusted GFS data
 storm_radius (fort.85)

OUTPUT:
 data_merge_d01 (fort.56) - merged data on outer domain.

USAGE:
 echo $gesfhr $BASIN | hwrf_inter_4to6.exe

4.4.16 hwrf_merge_nest_4x_step12_3n.exe

FUNCTION:
Merges inner and outer domains onto a 3X domain.

INPUT:
 $gesfhr(=6) $gesfhr last digit of the input/output file
 $st_int (the 68-69 characters in the tcvital.as)

$ibgs(=1) argument indicating if a cold start (ibgs=1) or a cycled run (ibgs=0)
tcvitals.as (fort.11) – observed storm center
old_hwrf_d01 or new_gfs_d01 (fort.26) - outer domain data
old_hwrf_d02 or new_gfs_d02 (fort.36) - middle domain data
old_hwrf_d03 or new_gfs_d03 (fort.46) - inner domain data

OUTPUT:
data_4x_hwrf (fort.56) - merged data from inner and outer domains
roughness1 or roughness2 (fort.66) - sea-mask (1=sea, 0=land) and ZNT (roughness
length) merged onto the 3X domain.

30_degree_data (fort.61): partially merged data from inner and outer domains. Not used
later.

USAGE:
 echo $gesfhr $st_int $ibgs $BASIN | hwrf_merge_nest_4x_10m2.exe

4.4.17 hwrf_pert_ct1.exe

FUNCTION:
 Adjusts storm vortex (storm_pert).

INPUT:
 $gesfhr(=6)
 hdas_atcfunix (fort.12) - storm track from previous 6-hr forecast
 tcvitals.as (fort.11) - storm center obs
 wrf_env (fort.26) - environmental flow from previous6-hr forecast (wrf_split1's

 84

 output)
 storm_pert (fort.71) - separated 3D vortex field (wrf_split1's output)

OUTPUT:
 storm_pert_new (fort.58) - adjusted storm perturbation
 storm_size_p (fort.14) - storm size information
 storm_sym (fort.23) - storm symmetry information

USAGE:
 echo $gesfhr $BASIN | hwrf_pert_ct1.exe

4.4.18 hwrf_split1.exe

FUNCTION:
 Splits the vortex from the background (environmental) field.

INPUT:
$gesfhr (=6)
$ibgs (=1)
$st_int (the 68-69 characters in the tcvital.as)

 tcvitals.as (fort.11) - storm center obs
data_4x_hwrf (fort.26) - merged data, on 3X domain, from inner and outer domains

 trak.fnl.all (fort.30) - storm center guess
 old_hwrf_d01 (fort.46) - outer domain data

OUTPUT:
 wrf_env (fort.56) - environmental flow
 storm_pert (fort.71) - separated 3D vortex field
 storm_radius (fort.85) - average of model and observed storm radius

 rel_inform.$cdate (fort.52) - diagnostics file (obs-previous 6-hr forecast)

vital_syn.$cdate (fort.55) – information for generating bogus if storm not found in
previous 6-hr forecast

USAGE:
 echo $gesfhr $ibgs $st_int $BASIN | hwrf_split.exe

4.4.19 hwrf_wrfout_newtime.exe

FUNCTION:
Changes the time stamp of WRF analysis run d01 output from 90 s to initial time (t=0),
so that it can be used in the track analysis script (track_analysis.ksh).

INPUT:
 WRF analysis run output: wrfout_d01_yyyy-mm-dd_hh:01:30

 85

OUTPUT:
WRF analysis run output with its time stamp changed: wrfout_d01_yyyy-mm-

dd_hh:00:00

USAGE:
 hwrf_wrfout_newtime.exe wrfout_d01_yyyy-mm-dd_hh:00:00 yyyymmddhh

4.4.20 unipost.exe

See Section 7.4.1.

4.5 Inner-core Data Assimilation
HWRF has the capability of assimilating tropical cyclone inner-core data such as the NOAA’s P3
TDR observation using GSI. The scripts default to the assimilation of TDR data, when available.
If inner core data assimilation is not desired, it can be disabled by setting INNER_CORE_DA=0
in file global_varks.ksh.

To collect inner-core observations, an aircraft has to penetrate the target TC multiple times to
finish one mission, which may take several hours; therefore the observations in one TDR data set
are collected at different times.

In order for GSI to calculate the innovation, defined as the difference between the first guess and
the analysis, it needs to have the first guess and the observations valid at the same time. To
accomplish this for observations that spawn a range of times, a procedure named FGAT is used.
In FGAT, first guess fields valid at various times are supplied to GSI, which then interpolates the
data to the time in which each observation was taken.

For HWRF, first guess fields are created at three time levels: 3 h before the HWRF initial time
(Figure 4.6-part 1), at the HWRF initial time (Figure 4.6-part 2), and 3 h after the HWRF initial
time (Figure 4.6-part 3). In order to create the three first guesses, the real_nmm, short WRF
forecasts, and vortex adjustment procedures are performed three times. This produces the three
ghost d03 output files that are used by GSI in its FGAT operation (Figure 4.7)

The inner core data assimilation is only performed on the ghost d03 domain. Note that when inner
core data assimilation is performed, the source of data to initialize the ghost and analysis runs is
not HDAS but GDAS. In other words, the d01 GSI analysis is not an input to the ghost and
analysis runs. This is done to avoid duplication, since the data assimilation near the storm center
will be performed in the ghost d03 domain.

In order to perform the data assimilation in the ghost domain, users should run
gsi_wrfghost_wrapper before merge_wrapper.

After the data is assimilated in the ghost d03, the GSI analysis on the parent domain, the middle
and inner domain output from the vortex adjust procedures, and the ghost d03 GSI analysis
(which used FGAT) are merged to produce the final atmospheric IC for the 5-day forecast. The
merging procedure is identical for the cases with or without inner core data assimilation.
Therefore, the box named “merge” in Figure 4.7 corresponds to the procedures detailed in Figure
4.3.

 86

Figure 4.6- part 1. Diagram of the HWRF initialization procedures when hurricane
inner-core data assimilation is conducted. The processes shown below the thick
horizontal line are described in this chapter. Part 1 refers to the processes at valid time 3
h before the HWRF initialization. Some boxes are shown in Figures 4.6 and 4.7 with
purple outline to indicate their correspondence.

 87

Figure 4.6- part 2. Same as Fig 4.6 - part 1, except for processes valid at the time of
HWRF initialization.

 88

Figure 4.6- part 3. Same as Fig 4.6 - part 1, except for processes at valid time three
hours after the HWRF initialization.

 89

Figure 4.7 Diagram of the data assimilation procedures when inner core data
assimilation is performed. Some boxes are shown in Figures 4.6 and 4.7 with purple
outline to indicate their correspondence.

 90

Chapter 5: Ocean Initialization of POM-TC

5.1 Introduction
This chapter explains how to run the initialization of the POM-TC component of the HWRF
model, available from the DTC. Users are also encouraged to read the HWRF v3.5a Scientific
Documentation.

5.2 Run Ocean Initialization Using the Wrapper
Script

The wrapper script involved with running the ocean initialization, pom_init_wrapper, can be
found in the directory

${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts/.

Before running pom_init_wrapper, check global_vars.ksh to make sure the following variables
are correctly defined (see Appendix).

DOMAIN_DATA
POMTC_ROOT
START_TIME
BASIN
SID
TCVITALS
LOOP_CURRENT_DIR
GFS_SPECTRAL_DIR
use_extended_eastatl
HWRF_SCRIPTS
OCEAN_FIXED_DIR

After confirming the environment variables listed above are defined correctly, the user can run
the wrapper script by typing the command:

./pom_init_wrapper.

The wrapper script first calls script global_vars.ksh to define the environmental variables. Next,
it calls the low-level script pom_init.ksh to run the ocean initialization. Another script,
gfdl_pre_ocean_sortvit.sh, is called from within pom_init.ksh.

Script pom_init.ksh is composed of the following seven functions:

function main
function get_tracks
function get_region
function get_sst
function sharpen
function phase_3
function phase_4

 91

The output files from hwrf-utilities/pom_init_wrapper will be in ${DOMAIN_DATA}/oceanprd.

Scripts pom-tc-united-grads.sh, pom-tc-eastatl-grads.sh, and pom-tc-eastpac-grads.sh, to plot the
POM-TC ocean output using the GRADS software, can be found in directory
${SCRATCH}/HWRF/pomtc/ocean_plot.

5.3 Functions in Script “pom_init.ksh”
The tasks accomplished by each of the functions called in script pom_init.ksh are described
below.

5.3.1 main

1. Initialize the function library.
2. Check to see if all the variables are set.
3. Alias the executables/scripts.
4. Check to see if all the executables/scripts exist.
5. Set the stack size.
6. Create a working directory and cd into it.
7. Get the existing storm track information using function get_tracks.
8. Find the ocean region using function get_region and then set it accordingly.
9. Get the GFS SST using function get_sst.
10. Run the feature-based sharpening program using function sharpen.
11. Run POM-TC phase 1 (a.k.a. phase 3) using function phase_3.
12. Run POM-TC phase 2 (a.k.a. phase 4) using function phase_4.

5.3.2 get_tracks

1. Get the entire existing storm track record from the syndat_tcvitals file using script
gfdl_pre_ocean_sortvit.sh and store it in file track.allhours.

2. Add a blank record at the end of the storm track in file track.allhours.
3. Remove all cycles after the current cycle from the storm track record and store it in

file track.shortened.
4. Use track.shortened as track file if it is not empty; otherwise, use track.allhours.
5. Extract various storm statistics from the last record in the track file to generate a

72-hour projected track that assumes storm direction and speed remain constant;
save this projected track in file shortstats.

Files track.allhours and track.shortened will be produced in directory
${DOMAIN_DATA}/oceanprd

5.3.3 get_region

1. Run the find region code, which selects the ocean region based on the projected
track points in the shortstats file; this region is east_atlantic or west_united.

2. Store the ocean region from the find region code in file ocean_region_info.txt.
3. If the ocean basin is the East Pacific, reset the ocean region to east_pacific.

 92

4. Set region variable to eastpac, eastatl, or united; run uncoupled if a storm is not in
one of these regions.

5. Store the region variable in file ${DOMAIN_DATA}/oceanprd/pom_region.txt.

5.3.4 get_sst

1. Create the directory for the GFS SST, mask, and lon/lat files.
2. Create symbolic links for the GFS spectral input files.
3. Run the getsst code.
4. Rename the GFS SST, mask, and lon/lat files for POM-TC phase 3.
Files lonlat.gfs, mask.gfs.dat, sst.gfs.dat will be produced in
${DOMAIN_DATA}/oceanprd/getsst.

5.3.5 sharpen

1. Prepare symbolic links for most of the input files for the sharpening program.
2. Continue with function sharpen only if the region variable is set as united.
3. Create the directory for the sharpening program output files.
4. Continue with function sharpen only if the Loop Current and ring files exist.
5. Use backup GDEM monthly climatological temperature and salinity files if they

exist but the Loop Current and ring files do not exist; warn the user accordingly.
6. Exit the ocean initialization with an error if neither the Loop Current and ring files

nor the backup climatological temperature and salinity files exist.
7. Assuming the Loop Current and ring files exist, use the simulation start date to

select the second of two temperature and salinity climatology months to use for
time interpolation to the simulation start date.

8. Choose the climatological input based on input_sharp (hardwired to GDEM).
9. Create symbolic links for all input files for the sharpening program.
10. Run the sharpening code.
11. Rename the sharpened climatology file as gfdl_initdata for POM-TC phase 3.
File gfdl_initdata.${region}.10 will be produced in
${DOMAIN_DATA}/oceanprd/sharpn.

5.3.6 phase_3

1. Create the directory for the POM-TC phase 3 output files.
2. Prepare symbolic links for some of the input files for POM-TC phase 3.
3. Modify the phase 3 parameter file by including the simulation start date.
4. Prepare symbolic links for the sharpened (or unsharpened) temperature and salinity

input file, and for the topography and land/sea mask file, based on whether the
region variable is united, eastatl, or eastpac. If the region variable is eastatl, choose
whether or not to use the extended east Atlantic domain based on whether or not
the value of variable use_extended_eastatl is set to true.

5. Create symbolic links for all input files for POM-TC phase 3. These links include
extra input files for defining the domain center and the land/sea mask if the region
variable is eastpac.

6. Run the POM-TC code for phase 3.

 93

7. Rename the phase 3 restart file as
${DOMAIN_DATA}/oceanprd/phase3/RST.phase3.${region} for POM-TC phase 4.

5.3.7 phase_4

1. Create the directory for the POM-TC phase 4 output files.
2. Prepare symbolic links for some of the input files for POM-TC phase 4.
3. If the track file has less than three lines in it, skip POM-TC phase 4 and use

RST.phase3 for initializing the coupled HWRF simulation.
4. Back up three days to end phase 4 at the coupled HWRF start date.
5. Modify the phase 4 parameter file by including the simulation start date, the track

file, and RST.phase3.
6. Prepare symbolic links for the sharpened (or unsharpened) temperature and salinity

input file and the topography and land/sea mask file based on whether the region
variable is united, eastatl, or eastpac. If the region variable is eastatl, choose
whether or not to use the extended east Atlantic domain based on whether or not
the value of variable use_extended_eastatl is set to true.

7. Create symbolic links for all input files for POM-TC phase 4, including the track
file.

8. Run the POM-TC code for phase 4.
9. Rename the phase 4 restart file as ${DOMAIN_DATA}/oceanprd/phase4/RST.final

for the coupled HWRF simulation.

5.4 Executables
5.4.1 gfdl_find_region.exe

FUNCTION:
Select the ocean region based on the projected track points in the shortstats file; this
region is east_atlantic or west_united.

INPUT:
 shortstats

OUTPUT:
 fort.61 (ocean_region_info.txt)

USAGE:
${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_find_region.exe < shortstats

5.4.2 gfdl_getsst.exe

FUNCTION:
 Extract SST, land/sea mask, and lon/lat data from the GFS spectral files.

INPUT:
 for11 (gfs.${start_date}.t${cyc}z.sfcanl)

 94

 fort.11 (gfs.${start_date}.t${cyc}z.sfcanl)
 fort.12 (gfs.${start_date}.t${cyc}z.sanl)

OUTPUT:
 fort.23 (lonlat.gfs)
 fort.74 (sst.gfs.dat)
 fort.77 (mask.gfs.dat)
 getsst.out

USAGE:
 ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_getsst.exe > getsst.out

5.4.3 gfdl_sharp_mcs_rf_l2m_rmy5.exe

FUNCTION:
 Run the sharpening program, which takes the T/S climatology, horizontally-
 interpolates it onto the POM-TC grid for the United region domain, assimilates a
 land/sea mask and bathymetry, and employs the diagnostic, feature-based
 modeling procedure described in the HWRF Scientific Documentation.

INPUT:
 input_sharp
 fort.66 (gfdl_ocean_topo_and_mask.${region})
 fort.8 (gfdl_gdem.${mm}.ascii)
 fort.90 (gfdl_gdem.${mmm2}.ascii)
 fort.24 (gfdl_ocean_readu.dat.${mm})
 fort.82 (gfdl_ocean_spinup_gdem3.dat.${mm})
 fort.50 (gfdl_ocean_spinup_gspath.${mm})
 fort.55 (gfdl_ocean_spinup.BAYuf)
 fort.65 (gfdl_ocean_spinup.FSgsuf)
 fort.75 (gfdl_ocean_spinup.SGYREuf)
 fort.91 (mmdd.dat)
 fort.31 (hwrf_gfdl_loop_current_rmy5.dat.${yyyymmdd})
 fort.32 (hwrf_gfdl_loop_current_wc_ring_rmy5.dat.${yyyymmdd})

OUTPUT:
 fort.13 (gfdl_initdata.${region}.${mm})
 sharpn.out

USAGE:
${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_sharp_mcs_rf_l2m_rmy5.exe < input_sharp >
sharpn.out

 95

5.4.4 gfdl_ocean_united.exe

FUNCTION:
Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3 and
phase 4, respectively, as in the model code) in the United region.

INPUT:
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.13 (gfdl_initdata.united.${mm})
 fort.66 (gfdl_ocean_topo_and_mask.united)
 fort.14 (not used if phase 1; RST.phase3.united if phase 2)

OUTPUT:
 RST.phase3.united if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2

USAGE:
Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_united.exe > phase3.out
Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_united.exe > phase4.out

5.4.5 gfdl_ocean_eastatl.exe

FUNCTION:

Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3 and
phase 4, respectively, as in the model code) in the East Atlantic region.

INPUT:
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.13 (gfdl_initdata.eastatl.${mm})
 fort.66 (gfdl_Hdeepgsu.eastatl)
 fort.14 (not used if phase 1; RST.phase3.eastatl if phase 2)

OUTPUT:
 RST.phase3.eastatl if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2

USAGE:
Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastatl.exe > phase3.out

 96

Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastatl.exe > phase4.out

5.4.6 gfdl_ocean_ext_eastatl.exe

FUNCTION:

Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3 and
phase 4, respectively, as in the model code) in the extended East Atlantic region. This
executable is not used in the operational HWRF configuration.

INPUT:
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.12 (gfdl_initdata.gdem.united.${mm})
 fort.13 (gfdl_initdata.eastatl.${mm})
 fort.66 (gfdl_ocean_topo_and_mask.eastatl_extn)
 fort.14 (not used if phase 1; RST.phase3.eastatl if phase 2)

OUTPUT:
 RST.phase3.eastatl if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2

USAGE:
Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_ext_eastatl.exe >
phase3.out
Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_ext_eastatl.exe >
phase4.out

5.4.7 gfdl_ocean_eastpac.exe

FUNCTION:

Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3 and
phase 4, respectively, as in the model code) in the East Pacific region.

INPUT:
 domain.center (used if phase 1; not used if phase 2)
 gfdl_pctwat (used if phase 1; not used if phase 2)
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.45 (gfdl_raw_temp_salin.eastpac.${mm} if phase 1; not used if phase 2)

 97

 fort.13 (output if phase 1; temp_salin_levitus.eastpac if phase 2)
 fort.66 (output if phase 1; eastpac_ocean_model_info if phase 2)
 fort.14 (not used if phase 1; RST.phase3.eastpac if phase 2)

OUTPUT:
 RST.phase3.eastpac if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2
 fort.13 (temp_salin_levitus.eastpac) if phase 1 only
 fort.66 (eastpac_ocean_model_info) if phase 1 only

USAGE:
Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastpac.exe > phase3.out
Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastpac.exe > phase4.out

 98

Chapter 6: How to Run the Forecast Model

6.1 Introduction
The operational HWRF, which runs on the North Atlantic and Eastern North Pacific basins, is an
atmosphere-ocean coupled forecast system, which includes an atmospheric component (WRF-
NMM), an ocean component (POM-TC), and the NCEP Coupler. Therefore, HWRF is a Multiple
Program Multiple Data (MPMD) system which consists of three executables, WRF, POM-TC,
and Coupler. After the ocean and atmosphere initializations are successfully completed, the
coupled HWRF system run can be submitted.

In the non-operational basins, Central Pacific, West Pacific, and Indian Ocean, HWRF can only
be run in atmosphere standalone mode, that is, uncoupled.

6.2 How to Run HWRF Using the Wrapper Script
hwrf_wrapper

This section describes how to use the wrapper script hwrf-utilities/wrapper_scripts/
hwrf_wrapper, which calls the low-level script wrf.ksh, to run the HWRF forecast on two batch
systems: MOAB/Torque and LSF. The user is responsible for understanding how to run MPMD
jobs on the platform where the HWRF system will be run if that system is not covered in this
document.

Before running hwrf_wrapper, check global_vars.ksh to make sure the following variables are
correctly defined (see Appendix).

WRF_ROOT
HWRF_UTILITIES_ROOT
DOMAIN_DATA
START_TIME
FCST_LENGTH
FCST_INTERVAL
WRF_MODE
IO_FMT
ATMOS_DOMAINS
MPIRUN
HWRF_FCST_CORES
BASIN
DTT
DYY
DXX
NX1
NY1
VERT_LEV
BKG_MODE

Note that in the wrapper script hwrf_wrapper, the following two variables are defined.

 99

WRF_MODE = main
HWRF_FCST_CORES =202

Note that HWRF_FCST_CORES includes one processor for the coupler and one for POM-TC.
The user can define HWRF_FCST_CORES to a different number. To calculate the number of
cores needed:

1. Number of IO groups and servers per group. The WRF namelist defines 4 IO server
groups with 4 servers per group (total of 16 processors).

2. Number of processors in the X and Y directions.
3. 1 processor for POM-TC.
4. 1 processor for the coupler.

For example:

16 + (8 * 23) + 1 + 1 = 202

It has been shown that HWRF_FCST_CORES can be defined as the following numbers (including
the two processors for the coupler and POM-TC):

6, 10, 18, 26, 34, 38, 50, 66, 92, 102, 122, 152, 182, 202, 225, 248 and 271.

The following numbers do not work:

73, 39, and 43.

For uncoupled runs the two cores allocated for POM-TC and the coupler are not used. The user
does not need to change the number of cores allocated (HWRF_FCST_CORES).

The user can either use a batch system to submit the forecast job to the remote computation
nodes, or, on Linux machines that use MOAB/Torque, interactively connect to these computation
nodes and run the job. Both methods are described in Section 1.6.

Overview of script wrf.ksh:

1. Initialize the function library and check to see if all the environment variables are
set and the executables exist.

2. Create and enter the work directory.
3. Link the input files required by WRF, including fix files, initial and boundary

condition files and geographical data files.
4. Run hwrf_swcorner_dynamic.exe to calculate the location of the middle nest and

generate the WRF namelist, namelist.input.
5. For the AL and EP basins,

a. Link the input files required by POM-TC, including fix files, initial and
boundary conditions files, bathymetry/topography data files etc.

b. Generate a namelist for POM-TC.
c. Generate a namelist for the coupler.

6. Submit the MPI forecast run.

Output files in directory ${DOMAIN_DATA}/wrfprd

A successful run of the wrapper script hwrf_wrapper and the low-level script wrf.ksh will
produce output files with the following naming convention.

 100

Primary output files containing most variables, output every three hours.

wrfout_d01_yyyy-mm-dd_hh:mm:ss
wrfout_d02_yyyy-mm-dd_hh:mm:ss
wrfout_d03_yyyy-mm-dd_hh:mm:ss

Auxiliary output files containing accumulated precipitation and 10-m winds, hourly output

auxhist1_ d01_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss

Text file with time series of storm properties (if high_freq=true is set in the WRF namelist).

hifreq_d03.htcf

File hifreq_d03.htcf has nine columns containing the following items.

1. forecast lead time (s)
2. minimum sea level pressure in the inner nest (hPa)
3. latitude of gridpoint with minimum sea level pressure
4. longitude of gridpoint with minimum sea level pressure
5. maximum wind in the inner nest at the lowest model level (kt)
6. latitude of gridpoint with the maximum wind
7. longitude of gridpoint with the maximum wind
8. latitude of the location of the center of the inner nest
9. longitude of the location of the center of the inner nest

The ocean model will produce diagnostic output files with the following naming convention.

1. GRADS.yymmddhh, (GrADS format, including temperature, salinity, density, U, V,
average U, average V and elevation) (for United and East Atlantic basins)

2. EL.yymmddhh (binary, elevation) (for United, East Atlantic and East Pacific basins
3. MLD.yymmddhh (binary, mixed layer depth) (for United and East Atlantic basins)
4. OHC.yymmddhh (binary, ocean heat content) (for United and East Atlantic basins)
5. T.yymmddh (binary, temperature) (for United, East Atlantic and East Pacific

basins)
6. TXY.yymmddhh (binary, momentum flux) (for United, East Atlantic and East

Pacific basins)
7. U.yymmddh (binary east-west direction current) (for United, East Atlantic and East

Pacific basins)
8. V.yymmddhh (binary north-south direction current) (for United, East Atlantic and

East Pacific basins)
9. WTSW.yymmddhh (binary, heat flux and shortwave radiation) (for United and East

Atlantic basins)

For example, the first POM-TC output file for a run started at 1200 UTC, 23 August 2011 would
be: GRADS.11082312 etc.

 101

Status check

To check whether the run was successful, look for “SUCCESS COMPLETE WRF” at the end of
the log file (e.g., rsl.out.0000).

Explanation of the MPI command for the forecast model

As mentioned in section 6.1, HWRF can be run as either a coupled or uncoupled model of the
atmosphere and ocean. The operational HWRF runs coupled in the North Atlantic and Eastern
North Pacific basins. Script wrf.ksh automatically submits coupled runs in the North Atlantic and
Eastern North Pacific basins, and uncoupled runs in other basins. If an uncoupled run in the
North Atlantic and Eastern North Pacific basins is desired, script wrf.ksh needs to be manually
altered to use the uncoupled submission command described below.

● Coupled
With LSF, using the command mpirun.lsf

mpirun.lsf -cmdfile cmdfile
where cmdfile is a file containing the list of executables. For example, the cmdfile
file below indicates that the coupled run will be submitted to 202 processors, one
for the coupler (hwrf_wm3c.exe), one for the United domain ocean model
(hwrf_ocean_united.exe) and 200 for wrf.exe:
hwrf_wm3c.exe
hwrf_ocean_united.exe
wrf.exe
wrf.exe
wrf.exe

 wrf.exe
With MOAB/Torque, using the command mpiexec

mpiexec -np 1 ./hwrf_wm3c.exe : -np 1 ./hwrf_ocean_united.exe : -np 200 ./wrf.exe
For example, the previous command will run the coupled model using 202
processors, one for the coupler (hwrf_wm3c.exe), one for the United domain ocean
model (hwrf_ocean_united.exe) and 200 for wrf.exe
Note that in the examples listed above, for the POM-TC United domain, the ocean
model executable hwrf_ocean_united.exe is used.

● Uncoupled
With LSF, using the command mpirun.lsf

mpirun.lsf -procs 200 ${WRF_ROOT}/main/wrf.exe
With MOAB/Torque, using the command mpiexec

mpiexec -np 200 ${WRF_ROOT}/main/wrf.exe

6.3 Running HWRF with Alternate Namelist Options
By following the directions above, the namelist for the WRF model (namelist.input) will be
constructed from a template provided in hwrf-utilities/parm. A sample namelist can be found in
Section 6.5. This template should only be altered by advanced users because many of the options
available in the WRF model are not supported for the HWRF configuration.

 102

The WRF namelist is described in detail at http://www.dtcenter.org/wrf-nmm/users/docs/
user_guide/V3/users_guide_nmm_chap1-7.pdf.

The HWRF physics suite can be altered in the ways described in the table below. These
configurations are only preliminarily tested and only limited support is provided for their use.

PARAMETERIZATION OPERATIONAL POSSIBLE ALTERNATES (PRELIMINARILY
TESTED)

Cumulus HWRF SAS (84) Tidtke (6), KF (1, trigger option 1), New SAS
(14)

Microphysics Tropical Ferrier
(85)

WSM6 (6), Thompson (8)

Surface Layer GFDL (88) None

Planetary Boundary
Layer

GFS (3) None

Land Surface Model GFDL (88) Noah (2)

Long Wave Radiation GFDL (98) RRTMG (4) (must link in table)

Short Wave Radiation GFDL (98) RRTMG (4) (must link in table), Dudhia (1)

The HWRF operational configuration uses option vortex_tracker=2,2,6 for the internal nest
tracking. While other namelist options for tracking the vortex are available, they are not
recommended, as they do not track the nest as reliably as the setup used in the operational
configuration.

Users have the option of getting a high frequency (each time step) ASCII output of several
hurricane related values (forecast lead time, minimum MSLP, location of the minimum MSLP,
max wind speed, location of the maximum wind speed, location of the domain center) by setting
the high_freq option in the namelist to true. Setting it to false will turn off this output. The
high_freq option is in the time_control section of the namelist.

6.4 Executables
6.4.1 wrf.exe

FUNCTION:
Atmospheric component of HWRF

INPUT:
geogrid static files: geo_nmm.d01.nc, geo_nmm_nest.l01.nc, and geo_nmm_nest.l02.nc
Lateral boundary conditions: wrfbdy_d01
Initial conditions for the parent domain: wrfinput_d01

 103

Initial conditions for the nests: wrfanl_d02_${YYYY}-${MM}-${DD}_${HH}:00:00 and
wrfanl_d03_${YYYY}-${MM}-${DD}_${HH}:00:00
Gravity wave drag file gwd_surface
WRF static files
namelist.input
fort.65

OUTPUT:
A successful run of wrf.exe will produce output files with the following naming
convention.
wrfout_d01_yyyy-mm-dd_hh:mm:ss
wrfout_d02_yyyy-mm-dd_hh:mm:ss
wrfout_d03_yyyy-mm-dd_hh:mm:ss
auxhist1_ d01_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss
hifreq_d03.htcf

USAGE:
For a coupled HWRF forecast, wrf.exe must be submitted with the coupler and the ocean
model (see Section 6.2).
For an uncoupled run,
wrf.exe

6.4.2 hwrf_wm3c.exe

FUNCTION:
Coupler that links the atmospheric component wrf.exe and oceanic component
hwrf_ocean_united.exe, hwrf_ocean_eastatl.exe or hwrf_ocean_eastpac.exe

INPUT:
Coupler namelist: cpl.nml

OUTPUT:
None

USAGE:
For a coupled HWRF forecast, the coupler hwrf_wm3c.exe must be submitted to the
computers with the atmosphere model wrf.exe and the ocean model
hwrf_ocean_united.exe, hwrf_ocean_eastatl.exe or hwrf_ocean_eastpac.exe (see Section
6.2).

 104

6.4.3 hwrf_ocean_united.exe

FUNCTION:
 Oceanic model for HWRF, for the United domain

INPUT:
gfdl_ocean_topo_and_mask.united
gfdl_initdata.united.${MM}, ${MM} is the month for the forecast storm
RST.final
sst.gfs.dat
mask.gfs.dat
lonlat.gfs
track
Note the ocean’s initial state of temperature and salinity for the United domain
(gfdl_initdata.united.${MM}) comes from the ocean initialization with a sharpening
process.

OUTPUT:
The ocean model will produce output files with the following naming convention:
${VARIABLE}.yymmddhh, where ${VARIABLE} includes GRADS, EL, OHC, MLD, T,
U, V, WTSW and TXY.
For example, the first POM-TC output file for a run started at 1200 UTC, 23 August 2011
would be GRADS.11082312

USAGE:
For a coupled HWRF forecast, the ocean model hwrf_ocean_united.exe must be
submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.4.4 hwrf_ocean_eastatl.exe

FUNCTION:
 Oceanic model for HWRF, for the East Atlantic domain

INPUT:
gfdl_ocean_topo_and_mask.eastatl
gfdl_initdata.eastatl.${MM}, ${MM} is the month for the forecast storm

 gfdl_Hdeepgsu.eastatl
 RST.final

sst.gfs.dat
mask.gfs.dat
lonlat.gfs

 105

track
Note the ocean’s initial state of temperature and salinity for East Atlantic basin
(gfdl_initdata.eastatl.${MM}) comes from fixed data based on climatology.

OUTPUT:
The ocean model will produce output files with the following naming convention:
${VARIABLE}.yymmddhh, where ${VARIABLE} includes GRADS, EL, OHC, MLD, T,
U, V, WTSW and TXY.
For example, the first POM-TC output file for a run started at 1200 UTC, 23 August 2011
would be GRADS.11082312.

USAGE:
For a coupled HWRF forecast, the ocean model hwrf_ocean_eastatl.exe must be
submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.4.5 hwrf_ocean_eastatl_ext.exe

FUNCTION:
Oceanic model for HWRF, for the East Atlantic extended domain. The East Atlantic
extended domain is used when the storm is in East Atlantic region and the environment
variable ${use_extended_eastatl} = T. This is not an operational configuration.

INPUT:
gfdl_ocean_topo_and_mask.eastatl_ext
gfdl_initdata.eastatl.${MM}, ${MM} is the month for the forecast storm

 gfdl_initdata.gdem.united.${MM}, ${MM} is the month for the forecast storm.
RST.final
sst.gfs.dat
mask.gfs.dat
lonlat.gfs
track
Note the ocean’s initial state of temperature and salinity for East Atlantic basin
(gfdl_initdata.eastatl.${MM}) comes from fixed data based on climatology.

OUTPUT:
The ocean model will produce output files with the following naming convention:
${VARIABLE}.yymmddhh, where ${VARIABLE} includes GRADS, EL, OHC, MLD, T,
U, V, WTSW and TXY.
For example, the first POM-TC output file for a run started at 1200 UTC, 23 August 2011
would be GRADS.11082312

 106

USAGE:
For a coupled HWRF forecast, the ocean model hwrf_ocean_eastatl_ext.exe must be
submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.4.6 hwrf_ocean_eastpac.exe

FUNCTION:
Oceanic model for HWRF, for the East Pacific domain.

INPUT:
temp_salin_levitus.eastpac
eastpac_ocean_model_info
RST.final
sst.gfs.dat
mask.gfs.dat
lonlat.gfs
track
Note the ocean’s initial state of temperature and salinity for East Pacific basin
(temp_salin_levitus.eastpac) comes from fixed data based on climatology.

OUTPUT:
The ocean model will produce output files with the following naming convention.
${VARIABLE}.yymmddhh, where ${VARIABLE} includes EL, T, U, V, and TXY.
For example, the first POM-TC output file for a run started at 1200 UTC, 23 August 2011
would be EL.11082312.

USAGE:
For a coupled HWRF forecast, the ocean model hwrf_ocean_eastpac.exe must be
submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.4.7 hwrf_swcorner_dynamic.exe

FUNCTION:
Calculates the lower-left corner of the nest as (i_parent_start, j_parent_start).

INPUT:
Storm center location: storm.center
Domain center location: domain.center
fort.12: namelist_main.input

 107

OUTPUT:
set_nest, which contains the i_parent_start and j_parent_start. For example the following
set_nest file specifies that the middle nest domain lower-left corner location is at (99,225)
on the parent domain grid.

istart=00099
jstart=00225

USAGE:
hwrf-utilities/exec/hwrf_swcorner_dynamic.exe

6.5 Sample HWRF namelist
The HWRF namelist used for the release case, Hurricane Sandy (2012), is listed below.
 &time_control
 start_year = 2012, 2012, 2012,
 start_month = 10, 10, 10,
 start_day = 28, 28, 28,
 start_hour = 06, 06, 06,
 start_minute = 00, 00, 00,
 start_second = 00, 00, 00,
 end_year = 2012, 2012, 2012,
 end_month = 11, 11, 11,
 end_day = 02, 02, 02,
 end_hour = 12, 12, 12,
 end_minute = 00, 00, 00,
 end_second = 00, 00, 00,
 interval_seconds = 21600,
 history_interval = 180, 180, 180,
 auxhist1_interval = 60, 60, 60
 frames_per_outfile = 1,1,1
 frames_per_auxhist1 = 1,1,1
 analysis = F, T,T,
 restart = .false.,
 restart_interval = 36000,
 reset_simulation_start = F,
 io_form_input = 2
 io_form_history = 2
 io_form_restart = 2
 io_form_boundary = 2
 io_form_auxinput1 = 2
 io_form_auxhist1 = 2
 auxinput1_inname = "met_nmm.d<domain>.<date>"
 debug_level = 1
 override_restart_timers = T
 /

 108

 &fdda
 /
 &domains
 time_step = 45,
 time_step_fract_num = 0,
 time_step_fract_den = 1,
 max_dom = 3,
 s_we = 1, 1, 1,
 e_we = 216, 88, 180,
 s_sn = 1, 1, 1,
 e_sn = 432, 170, 324,
 s_vert = 1, 1, 1,
 e_vert = 43, 43, 43,
 dx = 0.18, 0.06, 0.02,
 dy = 0.18, 0.06, 0.02,
 grid_id = 1, 2, 3,
 tile_sz_x = 0,
 tile_sz_y = 0,
 numtiles = 1,
 nproc_x = -1, ! must be on its own line
 nproc_y = -1, ! must be on its own line
 parent_id = 0, 1, 2,
 parent_grid_ratio = 1, 3, 3,
 parent_time_step_ratio = 1, 3, 3,
 i_parent_start = 0, 00099, 14,
 j_parent_start = 0, 00225, 33,
 feedback = 1,
 num_moves = -99
 num_metgrid_levels = 27,
 p_top_requested = 5000,
 ptsgm = 42000
eta_levels=1.0,.9919699,.9827400,.9710800,.9600599,.9462600,.9306099,.9129300,.8930600,.8
708600,.8462000,.8190300,.7893100,.7570800,.7224600,.6856500,.6469100,.6066099,.5651600,
.5230500,.4807700,.4388600,.3978000,.3580500,.3200099,.2840100,.2502900,.2190100,.190260
0,.1640600,.1403600,.1190600,.1000500,.0831600,.0682400,.0551200,.0436200,.0335700,.0248
200,.0172200,.0106300,.0049200,.0000000,
use_prep_hybrid = T,
 num_metgrid_soil_levels = 2,
/
 &physics
 num_soil_layers = 4,
 mp_physics = 85, 85, 85,
 ra_lw_physics = 98, 98, 98,
 ra_sw_physics = 98, 98, 98,

 109

 sf_sfclay_physics = 88, 88, 88,
 sf_surface_physics = 88, 88, 88,
 bl_pbl_physics = 3, 3, 3,
 cu_physics = 84, 84, 0,
 mommix = 1.0, 1.0, 1.0,
 var_ric = 1.0,
 coef_ric_l = 0.16,
 coef_ric_s = 0.25,
 h_diff = 1.0, 1.0, 1.0,
 gwd_opt = 2, 0, 0,
 sfenth = 0.0, 0.0, 0.0,
 nrads = 80,240,720,
 nradl = 80,240,720,
 nphs = 2,6,6,
 ncnvc = 2,6,6,
 movemin = 3,6,18,
! IMPORTANT: dt*nphs*movemin for domain 2 and 3 must be 540 and 180, respectively
! AND the history output times (10800, 10800, 3600) must be
! divisible by dt*nphs*movemin for domains 1, 2 and 3
 gfs_alpha = 0.7,0.7,0.7,
 sas_pgcon = 0.55,0.2,0.2,
sas_mass_flux=0.5,0.5,0.5,
 co2tf = 1,
vortex_tracker=2,2,6,
! Disable nest movement at certain intervals to prevent junk in the output files:
 nomove_freq = 0.0, 6.0, 6.0, ! hours
/
 &dynamics
 non_hydrostatic = .true., .true, .true,
 euler_adv = .false.
 wp = 0, 0, 0,
 coac = 0.75,3.0,4.0,
 codamp = 6.4, 6.4, 6.4,
 terrain_smoothing = 2,
/
 &bdy_control
 spec_bdy_width = 1,
 specified = .true. /
 &namelist_quilt
 poll_servers=.true.
 nio_tasks_per_group = 4,
 nio_groups = 4 /
 &logging
 compute_slaves_silent=.true.

 110

 io_servers_silent=.true.
 stderr_logging=0
 /

 111

Chapter 7: HWRF Post Processor

7.1 Introduction
The NCEP UPP is used to de-stagger the HWRF parent and nest domain output, compute
diagnostic variables, and interpolate the output from the native WRF grids to NWS standard
levels (pressure, height etc.) and standard output grids (latitude/longitude, Lambert Conformal,
polar- stereographic, Advanced Weather Interactive Processing System grids etc.). The UPP
outputs files in GRIB format. This package also merges the parent and nest domains forecasts
onto one combined domain grid.

Information on how to acquire and build the UPP code is available in Chapter 2.

7.2 How to Run UPP Using the Wrapper Script
unipost_wrapper

The UPP wrapper script unipost_wrapper and the low-level script unipost.ksh are distributed in
the tar file hwrfv3.5a_utilities.tar.gz and, following the procedure outlined in Chapter 2, will be
expanded in the directory of hwrf-utilities/wrapper_scripts and hwrf-utilities/scripts, respectively.

Before running unipost_wrapper, check global_vars.ksh and unipost_wrapper to make sure the
following variables are correctly defined (see Appendix).

HWRF_SCRIPTS
UPP_ROOT
HWRF_UTILITIES_ROOT
FHR
DOMAIN_DATA
ATMOS_DOMAINS
CRTM_FIXED_DIR
START_TIME
SID
UNI_CORES
IO_FMT
UPP_PROD_SAT
MPIRUN

Next use the qsub command to connect to the computer’s remote computation nodes (see Section
1.6). Note the number of processors to which the user should connect is defined as UNI_CORES.
Then run the wrapper script by typing its name, unipost_wrapper.

Note that other UPP scripts are distributed in the UPP release tar file hwrfv3.5a_upp.tar.gz but
they do not perform all the processes required for HWRF.

A script named run_grads is provided for running GrADS to plot the UPP output. The users can
find the script run_grads in the directory hwrf-utilities/scripts. Its wrapper script,
rungrads_wrapper, is located in the directory hwrf-utilities/wrapper_scripts. Before running
rungrads_wrapper, check global_vars.ksh to make sure the following variables are correctly
defined (see Appendix).

 112

DOMAIN_DATA
FCST_LENGTH
FCST_INTERVAL
UPP_ROOT
GRADS_BIN

Then run the wrapper script by typing its name: rungrads_wrapper, which will call its low-level
script run_grads. . Note that script run_grads calls Perl script grib2ctl.pl. Users can download
this script from www.cps.ncep.noaa.gov/products/wesley/grib2ctl.html. Script grib2ctl.pl needs
to be edited to contain the correct path to grib2ctl.pl. Additionally, note that script grib2ctl.pl
makes use of utility wgrib. Therefore, script grib2ctl.pl needs to be edited to point to
${SCRATCH}/HWRF/hwrf-utilities/exec/wgrib.exe.

7.3 Overview of the UPP Script
1. Initialize the function library and check to see if all the environment variables are

set and the executables exist.
2. Create and enter the work directory.
3. Copy the fix files and control file required by UPP. A control file is used to specify

which variables will be output (for more information, see WRF-NMM
documentation).

4. If UPP_PROD_SAT=F, no synthetic satellite images will be produced, and the
control file hwrf-utilities/parm/hwrf_cntrl.hurcn is utilized to specify the output
variables. Conversely, if UPP_PROD_SAT=T, synthetic satellite images will be
output along with other variables by using basin-dependent control files. These
control files are listed in Section 7.4.1.

5. If changes in the post-processed variables are desired, the control file can be
altered. For HWRF, the following variables, which are required by the GFDL
vortex tracker (see Chapter 8), should be postprocessed:
• absolute vorticity at 850 mb and 700 mb

• MSLP

• geopotential height at 850 and 700 mb

• wind speed at 10 m, 850 mb, 700 mb and 500 mb.
6. Run unipost.exe for each forecast valid time for the parent, middle nest and inner

nest domains. A namelist, itag, is created for each forecast valid time and domain,
and then read in by unipost.exe. This namelist contains 4 lines.
• Name of the WRF output file to be post processed

• Format of the WRF output (NetCDF or binary; choose NetCDF for HWRF)

• Forecast valid time (not model start time) in WRF format

• Model name (NMM or NCAR; choose NMM for HWRF)
7. Run copygb.exe to horizontally interpolate the native UPP output files to a variety

of regular lat/lon grids.

 113

8. Create merged UPP output files. In particular, create merged file for input in the
GFDL vortex tracker.

Output files in the working directory ${DOMAIN_DATA}/postprd/${fhr}
A general overview of the files produced by script unipost.ksh is provided in Figure 7.1.

● The following three files are in GRIB format on the HWRF native horizontal
grids.
○ WRFPRS_d01.${fhr} for the HWRF parent domain
○ WRFPRS_d02.${fhr} for the HWRF middle nest domain
○ WRFPRS_d03.${fhr} for the HWRF inner nest domain

● The following files are in GRIB format on regular lat/lon grids. The name
convention is “forecast domain(s)”_“interpolation domain”_“resolution”_
“variables”_“forecast lead time”. For example, d01_d01_010_all.006 is the 6-
hour HWRF parent domain forecast output that has been interpolated to a regular
lat/lon grid covering an area similar to the one of the parent domain, with a
horizontal resolution of 0.1 degree, containing all the variables present in the
unipost.exe output file.
○ Grid “d02p” is slightly larger than the middle nest domain, while grid “t02” is

approximately 20ox20o and used by the GFDL vortex tracker to extract the
track.

○ If “variables”=“all”, all the variables from the WRFPRS files are included in
the interpolated GRIB file. When only those variables required by the GFDL
vortex tracker are retained, “variable”=“sel”.

○ Files whose names start with “merge” are the result of combining two or more
domains together to generate a single output file.
■ d01_d01_010_all.${fhr}
■ d01_d01_010_sel.${fhr}
■ d01_d01_025_all.${fhr}
■ d01_d01_025_sel.${fhr}
■ d01_d02p_003_all.${fhr}
■ d01_d02p_003_sel.${fhr}
■ d02_d01_010_all.${fhr}
■ d02_d01_010_sel.${fhr}
■ d02_d02_010_all.${fhr}
■ d02_d02_010_sel.${fhr}
■ d02_d02p_003_all.${fhr}
■ d02_d02p_003_sel.${fhr}
■ d03_d01_010_all.${fhr}
■ d03_d01_010_sel.${fhr}
■ d03_d02p_003_all.${fhr}
■ d03_d02p_003_sel.${fhr}
■ d03_d03_003_all.${fhr}
■ d03_d03_003_sel.${fhr}
■ merged_d01d02d03_d01_010_sel.${fhr}
■ merged_d01d02d03_d02p_003_sel.${fhr}

 114

■ merged_d01d02d03_t02_003_sel.${fhr}
■ merged_d02d03_d01_010_sel.${fhr}
■ merged_d02d03_d02p_003_sel.${fhr}

Status check:

If “End of Output Job” is found in the standard output (stdout), the HWRF UPP script has
finished successfully.

Figure 7.1. Overview of the files produced by script unipost.ksh. See text for details.

7.4 Executables
7.4.1 unipost.exe

FUNCTION:
De-staggers the HWRF native output (wrfout_d01, wrfout_d02, or wrfout_d03),
interpolates it vertically to pressure levels, computes derived variables, and outputs in
GRIB format.

INPUT:
Table ${SCRATCH}/HWRF/hwrf-utilities/parm/hwrf_eta_micro_lookup.dat
HWRF native output (wrfout_d01, wrfout_d02 or wrfout_d03)
namelist itag
unipost control file. When UPP_PROD_SAT=T, the file is ${SCRATCH}/HWRF/hwrf-
utilities/parm/hwrf_cntrl.hurcn. When UPP_PROD_SAT=T, a basin-dependent file

 115

located in ${SCRATCH}/HWRF/hwrf-utilities/parm is used. Files hwrf_cntrl.satL,
hwrf_cntrl.satE, hwrf_cntrl.sat=C, and hwrf_cntrl.satW are used for the North Atlantic,
Eastern North Pacific, Central North Pacific, West North Pacific basins, respectively. File
hwrf_cntrl.sat_other is used for other basins.

OUTPUT:
HWRF postprocessed output in GRIB format WRFPRS_d01.${fhr}, WRFPRS_d02.${fhr}
or WRFPRS_d03.${fhr}

USAGE:
 ${SCRATCH}/HWRF/ UPP/bin/unipost.exe < itag

7.4.2 copygb.exe

FUNCTIONS:
1. interpolates a GRIB file to a user-specified grid
2. combines two GRIB files

INPUT for function a:
User-specified grid ${hr_grid}
unipost.exe output WRFPRS_d01.${fhr}, WRFPRS_d02.${fhr} or WRFPRS_d03.${fhr}

INPUT for function b:
User-specified grid ${hr_grid}
Two GRIB files, for example, d01_d01_010_all.000 and d03_d01_010_all.000

OUTPUT:
GRIB file on the grid of ${hr_grid}. See “Output files in the working directory
${DOMAIN_DATA}/postprd/${fhr}”

USAGE:
1. ${SCRATCH}/HWRF/UPP/bin/copygb.exe -xg"${hr_grid}" input_GRIB_file

out_GRIB_file
2. When a “-M” option is used, and the argument following it is a GRIB file, the

GRIB file will be interpreted as a merge file. This option can be used to combine
two GRIB files.

For example, the following command will combine wrfprs_d01.${fhr} and
wrfprs_d02.${fhr} onto wrfprs.${fhr}, whose grid is specified by ${hr_grid}.

${SCRATCH}/HWRF/ UPP/bin/copygb.exe -g"${hr_grid}" –xM
wrfprs_d01.${fhr} wrfprs_d02.${fhr} wrfprs.${fhr}

 116

Chapter 8: GFDL Vortex Tracker

8.1 Introduction
The GFDL vortex tracker is a program that ingests model forecasts in GRIB format, objectively
analyzes the data to provide an estimate of the vortex center position (latitude and longitude), and
tracks the storm for the duration of the forecast. Additionally, it reports metrics of the forecast
storm, such as intensity (maximum 10-m winds and MSLP) and structure (wind radii for 34-, 50-,
and 64-knot thresholds in each quadrant of the storm) at each output time. The GFDL vortex
tracker requires the forecast grids to be on a cylindrical equidistant, latitude-longitude (lat/lon)
grid. For HWRF, UPP is used to process the raw model output and create the GRIB files for the
tracker.

The vortex tracker creates two output files containing the vortex position, intensity and structure
information: one in Automated Tropical Cyclone Forecast (ATCF) format; and another in a
modified ATCF format.

The GFDL vortex tracker locates the hurricane vortex center positions by searching for the
average of the maximum or minimum of several parameters in the vicinity of an input first guess
position of the targeted vortex. The primary tracking parameters are relative vorticity at 850 mb
and 700 mb, MSLP, and geopotential height at 850 and 700 mb. Secondarily, wind speed at 10
m, and 850 mb and 700 mb are used. Winds at 500 mb are used, together with other parameters,
for advecting the storm and creating a first guess position for all times beyond initialization.
Many parameters are used in order to provide more accurate position estimates for weaker
storms, which often have poorly defined structures/centers.

Besides the forecast file in GRIB format, the vortex tracker also ingests a GRIB index file, which
is generated by running the program grbindex. The utility wgrib is also used for preparing data
for the tracker. Both grbindex and wgrib were developed by NCEP and are distributed by the
DTC as part of the HWRF Utilities.

This version of the tracker contains added capabilities of tracking cyclogenesis and identifying
cyclone thermodynamic phases. The identification of cyclone thermodynamic phases requires
that the input data contain temperature every 50 hPa from 300 to 500 mb (for the “vtt” scheme) or
the geopotential height every 50 mb from 300 to 900 mb (for the “cps” scheme) (see Section 8.4).

8.2 How to Run the GFDL Vortex Tracker Using the
Wrapper Script

The HWRF scripts come in the tarfile hwrfv3.5a_utilities.tar.gz and, following the procedures
outlined in Chapters 1 and 2, will be expanded in the directories ${SCRATCH}/HWRF/hwrf-
utilities/wrapper_scripts and ${SCRATCH}/HWRF/hwrf-utilities/scripts.

Before running tracker_wrapper, check global_vars.ksh to make sure the following variables are
correctly defined. (See Appendix)

HWRF_SCRIPTS
HWRF_UTILITIES_ROOT
TRACKER_ROOT
DOMAIN_DATA

 117

START_TIME
ATCFNAME
SID

Then run the wrapper script by typing its name, tracker_wrapper.

The tracker reads the HWRF postprocessed files in the combined domain. It produces a 3-hourly
track and a 6-hourly track for the entire forecast length and another 3-hourly one for the 12-hr
forecast, using the UPP output merge_d01d02d03_t02_sel.${fhr} (see Section 7.3). The track for
the 12-hr forecast is used in the vortex relocation procedure for the following cycle.

8.3 Overview of the Script tracker.ksh
The steps performed by the script tracker.ksh are listed below.

1. Initialize the function library and check to see if all the environment variables are
set and the executables exist.

2. Create and enter the work directory.
3. Create a tracker namelist file.
4. Concatenate the UPP output files into one GRIB file that contains all the forecast

lead times.
5. Run grbindex to get a GRIB index file for the GRIB file generated in 4.
6. Create a file, fcst_minutes, which contains the forecast lead times the tracker will

process.
7. Link the input files (see Section 8.6.1).
8. Run the tracker executable hwrf_gettrk.exe.
9. Output files in ${DOMAIN_DATA}/gvtprd.

8.4 How to Generate Phase Space Diagnostics
The released wrapper and low-level scripts do not include the phase space diagnostics. To use
this function, the user should either modify the scripts or run the following procedures manually.

1. In the GFDL vortex tracker namelist set the items listed below.
phaseflag=y
phasescheme=both or cps or vtt
wcore_depth=1.0

2. If phasescheme is set to cps, run hwrf_vint.exe (see Section 8.6.2) to vertically
interpolate the geopotential from 300 to 900 mb at a 50 mb interval. Then append
these geopotential variables to the tracker’s GRIB format input file.

3. If phasescheme is set to ‘vtt’ , run hwrf_vint.exe (see Section 8.6.2) to vertically
interpolate the temperature from 300 to 500 mb at a 50 mb interval. Then run
hwrf_tave.exe (see Section 8.6.3) to obtain the average temperature between 300
and 500 mb. This average temperature field is appended to the tracker’s GRIB
format input file.

4. If phasescheme is set to ‘both’, then both steps 2) and 3) are needed.
5. When the phase space diagnostics is performed, the output will be generated in

fort.64 as fields 37-41 (see Section 8.6.1).

 118

8.5 How to Run the Tracker in Cyclogenesis Mode
The released wrapper and low-level scripts do not include running the tracker in cyclogenesis
mode as this capability is not used operationally. To use this function, the user should either
modify the scripts or run the following procedures manually.

1. In the GFDL vortex tracker namelist, set the items listed below.
trkrinfo%westbd
trkrinfo%eastbd
trkrinfo%southbd
trkrinfo%northbd
They are the boundaries for searching for new storms in cyclogenesis mode. They
do not need to match the boundaries of your grid.

2. In the GFDL vortex tracker namelist, set the item trkrinfo%type=tcgen or
trkinfo%type=midlat (for the difference between tcgen and midlat, see Section
8.6.1).

3. The tracker in cyclogenesis mode requires that the files fort.12 and fort.14 exist in
the working directory, but these two files can be blank, as created by the commands
“touch fort.12” and “touch fort.14”, respectively.

4. In addition to fort.64 and fort.69, another ATCF format output file, fort.66, will be
produced by the tracker when it runs in cyclogenesis mode.

8.6 Executables
8.6.1 hwrf_gettrk.exe

INPUT:
fort.11: GRIB file containing the postprocessed HWRF forecast
fort.12: TCVitals file containing the first guess location of the forecast vortex
For example, the following TCVitals file (this should be a 1-line file without line break)
provides a first guess location for Hurricane Sandy of 31.5N and 73.7W.

NHC 18L SANDY 20121028 0600 315N 0737W 040 062 0960 1006 0890 33 167 0834
0500 0500 0519 D -999 0278 0278 -999 72 405N 770W -999 -999 0167 -999

fort.14: TCVitals file used for tropical cyclonegenesis tracking. This file is not used in
HWRF’s operational configuration. File fort.14, which can be blank, should exist in the
directory where the tracker is run, otherwise the tracker will stop.
fort.15: Forecast lead times (in minutes) the tracker will process.
For example, the following file specifies that the tracker will process the GRIB output for
lead times 0, 180, 360 and 540 minutes.
 1 0
 2 180
 3 360
 4 540

 119

Note the format of the records in this file is a 4-digit integer showing the number of the forecast
lead time, followed by 1 blank space, followed by a 5-digit integer showing the forecast lead time
in minutes.

fort.31: a GRIB index file generated by the program grbindex.

NAMELIST:
inp%bcc First 2 digits of the year for the initial time of the forecast (e.g., the

"20" in "2012")

inp%byy

Last 2 digits of the year for the initial time of the forecast (e.g., the "12"
in "2012")

inp%bmm 2-digit month (01, 02, etc) for the initial time of the forecast

inp%bdd 2-digit day for the initial time of the forecast

inp%bhh 2-digit hour for the initial time of the forecast

inp%model Model ID number as defined by the user in the script. This is used in
subroutine getdata to define what the GRIB IDs are for surface wind
levels. Create a unique number in the script for your model and make
sure you have the corresponding IDs set up for it in subroutine getdata.
For HWRF use 17. The Model ID numbers for other models are listed
below:

(1) GFS, (2) MRF, (3) UKMET, (4) ECMWF,

 (5) NGM, (6) NAM, (7) NOGAPS, (8) GDAS,

 (10) NCEP Ensemble, (11) ECMWF Ensemble,

 (13) SREF Ensemble, (14) NCEP Ensemble, (15) CMC,

(16) CMC Ensemble, (18) HWRF Ensemble,

(19) HWRF-DAS (HDAS),

(20) Ensemble RELOCATION (21) UKMET hi-res (NHC)

 120

inp%lt_units 'hours' or 'minutes', this defines the lead time units used by the PDS in
your GRIB header

 inp%file_seq 'onebig' or 'multi', this specifies if the tracker will process one big input
file or multiple files for each individual lead times. ‘onebig’ is used as
the default method in the community HWRF scripts.

inp%modtyp Type of the model. Either 'global' or 'regional'. For HWRF, choose
‘regional’.

inp%nesttyp Type of the nest grid. Either ‘moveable’ or ‘fixed’. For HWRF, choose
‘moveable’.

fnameinfo%gmodn
ame

Defines the model name in the input files, e.g., 'hwrf'. Only when
inp%file_seq='multi'

fnameinfo%rundesc
r

Describe the model runs in the input files, e.g., 'combined'. Only when
inp%file_seq= 'multi'

fnameinfo%atcfdes
cr

Describe the storm information in the input files, e.g., 'irene09l'. Only
when inp%file_seq='multi'

atcfnum Obsolete; can be set to any integer

atcfname Character model ID that will appear in the ATCF output (e.g., GFSO,
HWRF, AHW, HCOM etc)

atcfymdh 10-digit yyyymmddhh date that will be used in output text track files

atcffreq Frequency (in centahours) of output for atcfunix.Default value is 600
(six hourly).

trkrinfo%westbd For genesis runs, the western boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

 121

trkrinfo%eastbd For genesis runs, the eastern boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

trkrinfo%northbd For genesis runs, the northern boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

trkrinfo%southbd For genesis runs, the southern boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

trkrinfo%type trkrinfo%type defines the type of tracking to do. A 'tracker' run
functions as the standard TC tracker and tracks only storms from the
TCVitals. 'tcgen' and 'midlat' run in genesis mode and will look for
new storms in addition to tracking from TCVitals. 'tcgen' will look for
all parameters at the various vertical levels, while 'midlat' will only
look for MSLP and no checks are performed to differentiate tropical
from non-tropical cyclones.For HWRF, choose 'tracker'.

trkrinfo%mslpthres
h

Threshold for the minimum MSLP gradient (units mb/km) that must be

met in order to continue tracking.

trkrinfo%v850thres
h

Threshold for the minimum azimuthally-average 850 mb cyclonic
tangential wind speed (m/s) that must be exceeded in order to keep

tracking.

trkrinfo%gridtype 'global' or 'regional', this defines the type of domain grid. For HWRF or

other limited area models, choose 'regional'.

trkrinfo%contint This specifies the interval (in Pa) used by subroutine
check_closed_contour to check for a closed contour in the mslp field
when running in genesis mode. Note that check_closed_contour is also
called from the routine that checks for a warm core, but the contour
interval is hard-wired in the executable as 1.0 degree K for that usage.

trkrinfo%out_vit This is only set to 'y' if the tracker is running in genesis mode, and it
tells the tracker to write out a "TCVitals" record for any storms that it

 122

finds at the model initialization time.
For HWRF, choose ‘n’.

phaseflag 'y' or 'n', tells the program whether or not to determine the cyclone
thermodynamic phase

phasescheme 'cps', 'vtt', 'both', tells the program which scheme to use for checking
the cyclone phase. 'cps' is Hart's cyclone phase space, 'vtt' is a simple
300-500 mb warm core check based on Vitart, and 'both' tells the
program to use both schemes. Not used if phaseflag='n'

wcore_depth The contour interval (in deg K) used in determining if a closed contour
exists in the 300-500 mb temperature data, for use with the vtt scheme

structflag 'y' or 'n', tells the program whether or not to determine the cyclone
thermodynamic structure.

Ikeflag 'y' or 'n', tells the program whether or not to calculate the Integrated
Kinetic Energy (IKE) and Storm Surge Damage Potential (SDP).

use_waitfor ‘y’ or ‘n’, for waiting for input files. Use ‘n’ unless for real-time
operational runs.

verb Level of detail printed to terminal. Choose from 0 (no output),1 (error
messages only), 2 (more messages), 3 (all messages).

OUTPUT:
Two files are output, both are in a modified ATCF format: fort.69; and fort.64. When the
tracker runs in cyclogenesis mode, it produces an additional ATCF format file: fort.66.
And if the “ikeflag” is set to “y” in the namelist, still another output file will be created:
fort.74.

A sample of the vortex tracker output fort.69 is listed below:
AL, 18, 2012102806, 03, HCOM, 00000, 315N, 737W, 65, 949, XX, 34, NEQ, 0351, 0106, 0141, 0329, 0, 0, 36
AL, 18, 2012102806, 03, HCOM, 00000, 315N, 737W, 65, 949, XX, 50, NEQ, 0058, 0058, 0070, 0070, 0, 0, 36
AL, 18, 2012102806, 03, HCOM, 00000, 315N, 737W, 65, 949, XX, 64, NEQ, 0000, 0000, 0039, 0037, 0, 0, 36
AL, 18, 2012102806, 03, HCOM, 00300, 319N, 731W, 65, 951, XX, 34, NEQ, 0333, 0133, 0205, 0323, 0, 0, 30
AL, 18, 2012102806, 03, HCOM, 00300, 319N, 731W, 65, 951, XX, 50, NEQ, 0064, 0065, 0065, 0058, 0, 0, 30
AL, 18, 2012102806, 03, HCOM, 00300, 319N, 731W, 65, 951, XX, 64, NEQ, 0035, 0043, 0045, 0000, 0, 0, 30
AL, 18, 2012102806, 03, HCOM, 00600, 323N, 724W, 60, 956, XX, 34, NEQ, 0313, 0173, 0205, 0308, 0, 0, 39

 123

AL, 18, 2012102806, 03, HCOM, 00600, 323N, 724W, 60, 956, XX, 50, NEQ, 0068, 0080, 0076, 0043, 0, 0, 39
AL, 18, 2012102806, 03, HCOM, 00900, 329N, 718W, 57, 959, XX, 34, NEQ, 0297, 0192, 0217, 0306, 0, 0, 43
AL, 18, 2012102806, 03, HCOM, 00900, 329N, 718W, 57, 959, XX, 50, NEQ, 0064, 0069, 0054, 0000, 0, 0, 43
AL, 18, 2012102806, 03, HCOM, 01200, 337N, 715W, 57, 959, XX, 34, NEQ, 0274, 0280, 0257, 0285, 0, 0, 42
AL, 18, 2012102806, 03, HCOM, 01200, 337N, 715W, 57, 959, XX, 50, NEQ, 0076, 0076, 0000, 0041, 0, 0, 42
AL, 18, 2012102806, 03, HCOM, 01500, 344N, 713W, 58, 958, XX, 34, NEQ, 0319, 0269, 0274, 0323, 0, 0, 41
AL, 18, 2012102806, 03, HCOM, 01500, 344N, 713W, 58, 958, XX, 50, NEQ, 0125, 0060, 0146, 0094, 0, 0, 41
AL, 18, 2012102806, 03, HCOM, 01800, 349N, 716W, 64, 957, XX, 34, NEQ, 0343, 0340, 0269, 0319, 0, 0, 106
AL, 18, 2012102806, 03, HCOM, 01800, 349N, 716W, 64, 957, XX, 50, NEQ, 0163, 0127, 0153, 0159, 0, 0, 106
AL, 18, 2012102806, 03, HCOM, 02100, 353N, 717W, 75, 955, XX, 34, NEQ, 0351, 0264, 0252, 0290, 0, 0, 39

Column 1: basin name. "AL" represents Atlantic and “EP” northeast Pacific.

Column 2: ATCF storm ID number. Sandy was the 18th storm in the Atlantic Basin in 2012.

Column 3: model starting time.

Column 4: constant and 03 simply indicates that this record contains model forecast data.

Column 5: model ATCF name.

Column 6: forecast lead time in hours multiplied by 100 (e.g, 00900 represents 9.00 hr).

Column 7-8: vortex center position (latitude and longitude multiplied by 10).

Column 9: vortex maximum 10-m wind (in kt).

Column 10: vortex minimum MSLP (in hpa).

Column 11: placeholder for character strings that indicate whether the storm is a depression,
tropical storm, hurricane, subtropical storm etc. Currently, that storm type character string is only
used for the observed storm data in the NHC Best Track data set.

Column 12: thresholds wind speed in knots, an identifier that indicates whether this record
contains radii for the 34-, 50- or 64-knot wind thresholds.

Column 13: “NEQ” indicates that the four radii values that follow will begin in the northeast
quadrant and progress clockwise.

Column 14-17: wind radii (in nm) for the threshold winds in each quadrant.

Column 18-19: not used.

Column 20: radius of maximum winds, in nautical miles.

A sample of the vortex tracker output fort.64 is listed below:
AL, 18, 2012102806, 03, HCOM, 000, 315N, 737W, 65, 949, XX, 34, NEQ, 0351, 0106, 0141, 0329, 0, 0, 36, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 000, 315N, 737W, 65, 949, XX, 50, NEQ, 0058, 0058, 0070, 0070, 0, 0, 36, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 000, 315N, 737W, 65, 949, XX, 64, NEQ, 0000, 0000, 0039, 0037, 0, 0, 36, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 003, 319N, 731W, 65, 951, XX, 34, NEQ, 0333, 0133, 0205, 0323, 0, 0, 30, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 003, 319N, 731W, 65, 951, XX, 50, NEQ, 0064, 0065, 0065, 0058, 0, 0, 30, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 003, 319N, 731W, 65, 951, XX, 64, NEQ, 0035, 0043, 0045, 0000, 0, 0, 30, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 006, 323N, 724W, 60, 956, XX, 34, NEQ, 0313, 0173, 0205, 0308, 0, 0, 39, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 006, 323N, 724W, 60, 956, XX, 50, NEQ, 0068, 0080, 0076, 0043, 0, 0, 39, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 009, 329N, 718W, 57, 959, XX, 34, NEQ, 0297, 0192, 0217, 0306, 0, 0, 43, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

 124

AL, 18, 2012102806, 03, HCOM, 009, 329N, 718W, 57, 959, XX, 50, NEQ, 0064, 0069, 0054, 0000, 0, 0, 43, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 012, 337N, 715W, 57, 959, XX, 34, NEQ, 0274, 0280, 0257, 0285, 0, 0, 42, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 012, 337N, 715W, 57, 959, XX, 50, NEQ, 0076, 0076, 0000, 0041, 0, 0, 42, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999AL, 18, 2012102806, 03, HCOM, 015,
344N, 713W, 58, 958, XX, 34, NEQ, 0319, 0269, 0274, 0323, 0, 0, 41, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0, 0,
THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

Column 1-20: same as fort.69 except that column 6, the forecast lead time, instead of being a 5-
digit integer as in fort.69, is a 3-digit integer.

Column 21-35: space fillers.

Column 36: “THERMO PARAMS,” indicating that thermodynamics parameters will follow.

Column 37-39: The three cyclone phase space parameters, and all values shown have been
multiplied by a factor of 10. The values are listed below.

(1) Parameter B (left-right thickness asymmetry)
(2) Thermal wind (warm/cold core) value for lower troposphere (900-600 mb)
(3) Thermal wind value for upper troposphere (600-300 mb)

Column 40: Presence of a warm core. In this sample it is “U”, which stands for “undetermined”,
meaning the warm core check was not performed. When the warm core check is performed, this
field will be either ‘Y’ or ‘N’, indicating whether the warm core is identified or not.

Column 41: Warm core strength x 10 (in degrees). It indicates the value of the contour interval
that was used in performing the check for the warm core in the 300-500 mb layer.

Column 42-43: Constant strings.

A sample of the vortex tracker output fort.66 is listed below:
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 34, NEQ, 0103, 0077, 0058,
0095, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 50, NEQ, 0058, 0042, 0032,
0054, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 64, NEQ, 0043, 0027, 0019,
0041, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 34, NEQ, 0156, 0096, 0059,
0145, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 50, NEQ, 0065, 0056, 0037,
0058, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 64, NEQ, 0047, 0031, 0030,
0042, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 34, NEQ, 0123, 0098, 0059,
0104, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 50, NEQ, 0069, 0053, 0047,
0058, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 64, NEQ, 0044, 0033, 0033,
0044, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694

Column 1: “TG”, the basin id for cyclogenesis (when trkrinfo%type is set to midlat, this id is
named “ML”).

Column 2: the number of cyclogenesis the tracker identified.

Column 3: the ID for the cyclogenesis, ${YYYYMMDDHH}_F${FFF}_$Lat_$Lon_FOF where
YYYYMMDDHH, FFF, Lat and Lon are the model initialization time, the forecast lead time, the
latitude and the longitude, respectively, in which the cyclogenesis was first identified.

Column 4-18: same as Columns 3-17 in fort.64.

Column 19: pressure of last closed isobar (in mb).

 125

Column 20: radius of last closed isobar (nm).

Column 21: radius of maximum wind (nm).

Column 22-24: The cyclone phase space parameters, and all values shown have been multiplied
by a factor of 10. The values are listed below.

1. Parameter B (left-right thickness asymmetry)
2. Thermal wind (warm/cold core) value for lower troposphere (900-600 mb)
3. Thermal wind value for upper troposphere (600-300 mb)

Column 25: Presence of a warm core. In this sample it is “U”, which stands for “undetermined”,
meaning the warm core check is not performed. When the warm core check is performed, this
field will be either ‘Y’ or ‘N’, indicating whether the warm core is identified or not.

Column 26: storm moving direction (in degrees).

Column 27: storm moving speed (in ms-1).

Column 28: mean 850 hpa vorticity (s-1x10e5).

Column 29: max (gridpoint) 850 hpa vorticity (s-1x10e5).

Column 28: mean 700 hpa vorticity (s-1x10e5).

Column 29: max (gridpoint) 700 hpa vorticity (s-1x10e5).

A sample of the vortex tracker output fort.74 is listed below:
AL, 09, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 91, IKE, 0, 23, 34, 16, 5, 0, 0, 0, 2039N, 7062W
AL, 09, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 91, IKE, 0, 28, 42, 25, 8, 0, 0, 0, 2081N, 7142W
AL, 09, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 91, IKE, 0, 28, 44, 25, 8, 0, 0, 0, 2088N, 7220W
AL, 09, 2011082312, 03, HCOM, 018, 213N, 728W, 99, 962, XX, 91, IKE, 0, 25, 46, 19, 9, 0, 0, 0, 2131N, 7276W
AL, 09, 2011082312, 03, HCOM, 024, 218N, 733W, 92, 962, XX, 91, IKE, 0, 27, 50, 23, 8, 0, 0, 0, 2179N, 7333W
AL, 09, 2011082312, 03, HCOM, 030, 225N, 741W, 97, 959, XX, 91, IKE, 0, 28, 51, 26, 9, 0, 0, 0, 2245N, 7415W
AL, 09, 2011082312, 03, HCOM, 036, 231N, 749W, 95, 961, XX, 91, IKE, 0, 29, 51, 27, 11, 0, 0, 0, 2314N, 7488W
AL, 09, 2011082312, 03, HCOM, 042, 239N, 756W, 100, 956, XX, 91, IKE, 0, 29, 54, 28, 11, 0, 0, 0, 2387N, 7562W
AL, 09, 2011082312, 03, HCOM, 048, 248N, 762W, 107, 953, XX, 91, IKE, 0, 30, 58, 30, 14, 0, 0, 0, 2479N, 7621W
AL, 09, 2011082312, 03, HCOM, 054, 258N, 767W, 111, 949, XX, 91, IKE, 0, 32, 62, 34, 16, 0, 0, 0, 2575N, 7668W
AL, 09, 2011082312, 03, HCOM, 060, 267N, 770W, 113, 946, XX, 91, IKE, 0, 33, 65, 38, 18, 0, 0, 0, 2668N, 7696W
AL, 09, 2011082312, 03, HCOM, 066, 277N, 773W, 111, 944, XX, 91, IKE, 0, 34, 67, 40, 21, 0, 0, 0, 2769N, 7731W
AL, 09, 2011082312, 03, HCOM, 072, 286N, 774W, 114, 944, XX, 91, IKE, 0, 35, 68, 42, 23, 0, 0, 0, 2864N, 7742W
AL, 09, 2011082312, 03, HCOM, 078, 296N, 775W, 113, 941, XX, 91, IKE, 0, 35, 73, 43, 22, 0, 0, 0, 2959N, 7753W
AL, 09, 2011082312, 03, HCOM, 084, 304N, 774W, 107, 944, XX, 91, IKE, 0, 35, 74, 43, 22, 0, 0, 0, 3037N, 7742W
AL, 09, 2011082312, 03, HCOM, 090, 312N, 774W, 108, 941, XX, 91, IKE, 0, 36, 77, 46, 23, 0, 0, 0, 3119N, 7745W
AL, 09, 2011082312, 03, HCOM, 096, 320N, 773W, 107, 942, XX, 91, IKE, 0, 37, 79, 51, 26, 0, 0, 0, 3198N, 7728W
AL, 09, 2011082312, 03, HCOM, 102, 328N, 772W, 111, 938, XX, 91, IKE, 0, 38, 78, 53, 28, 0, 0, 0, 3278N, 7719W
AL, 09, 2011082312, 03, HCOM, 108, 336N, 769W, 111, 937, XX, 91, IKE, 0, 37, 76, 51, 30, 0, 0, 0, 3360N, 7690W
AL, 09, 2011082312, 03, HCOM, 114, 347N, 766W, 106, 939, XX, 91, IKE, 0, 35, 68, 43, 21, 0, 0, 0, 3473N, 7664W
AL, 09, 2011082312, 03, HCOM, 120, 361N, 764W, 90, 950, XX, 91, IKE, 0, 32, 57, 35, 10, 0, 0, 0, 3611N, 7642W
AL, 09, 2011082312, 03, HCOM, 126, 375N, 764W, 69, 957, XX, 91, IKE, 0, 27, 42, 24, 2, 0, 0, 0, 3745N, 7637W

Column 1-11: Same as fort.64.

Column 12-13: fixed fields.

Column 14: wind damage potential (wdp) (not computed in this version, therefore is always
zero).

Column 15: storm surge damage potential (SDP) (multiplied by 10).

Column 16-18: IKE, in terajoule, for 10 ms-1, 18 ms-1 and 33 ms-1 winds, respectively.

 126

Column 19-21: IKE for 25-40 ms-1, 41-54 ms-1 and 55 ms-1 winds, currently not computed,
therefore are always zero

Column 22-23: vortex center position (latitude and longitude multiplied by 100).

USAGE:
hwrf_gettrk.exe < namelist

8.6.2 hwrf_vint.exe

Program to interpolate from various pressure levels onto a regularly spaced grid, with 50-hpa
vertical level intervals. Each run only processes one lead time. Therefore it is necessary to use
this executable separately for all lead times.

INPUT:
fort.11: GRIB file containing the postprocessed HWRF output that must contain at least
two levels temperature data: 300 and 500 hpa.
fort.16: text file containing the number of input pressure levels.
fort.31: index file of fort.11
Namelist: generated by echo “&timein ifcsthour=${fhour} iparm=${gparm}/”
where ${fhour} is the forecast lead time and ${gparm} is the variable to be
processed. For phase space diagnostics, geopotential height (when
phasescheme=’cps’, ${gparm)=7) or temperature (when phasescheme=’vtt’,
${gparm}=11) or both (when phasescheme=’both’) need to be processed.

OUTPUT:
fort.51: GRIB file that contains the temperature data on vertical levels 300, 350, 400, 450
and 500 hpa.

USAGE:
hwrf_vint.exe < namelist

8.6.3 hwrf_tave.exe

Program to vertically average temperature in the 500-300 hpa layer.

INPUT:
 fort.11: GRIB file containing the temperature at least at levels 300, 350, 400, 450
 and 500 hpa. This file can be generated by hwrf_vint.exe
 fort.16: text file containing the number of input pressure levels.
 fort.31: index file of fort.11
 namelist: generated by the command: echo “&timein ifcsthour=${fhour},
 iparm=11/” > ${namelist}

OUTPUT:
 fort.51: GRIB file containing the mean temperature in the 300-500 hpa layer.

 127

USAGE:
 hwrf_tave.exe < namelist

8.7 How to Plot the Tracker Output Using
ATCF_PLOT

atcf_plot is a set of GrADS scripts that can be used to plot hurricane track files in ATCF format.

atcf_plot can be found in the directory: gfdl-vortextracker/trk_plot/plottrak.

To use atcf_plot to plot the storm’s track:

● Enter the directory gfdl-vortextracker/trk_plot.
● Run gribmap on the GrADS ctl file plottrak.ctl. gribmap is a GrADS utility that

maps what is in the ctl file with the binary data that it finds inside the actual GRIB
data file. It creates a map (plottrak.ix) that points to the locations where the
requested binary data starts for the different variables and levels.

Create the map file by using the command:

 gribmap -v -i plottrak.ctl

You should see one line in the output that has "MATCH" in the string. Both the plottrack.ctl and
the newly created plottrak.ix map file need to be in the directory where the script below is run.

● Edit the atcfplot.sh to set the following paths:
1. gradsv2: path to the GrADS executable (for example,

/contrib/grads/bin/gradsc).
2. GADDIR: path to the directory containing the supplemental font and map files in

for GrADS (for example, /contrib/grads/lib).
3. scrdir: path to the working directory (for example,

/home/${USER}/HWRF/src/gfdl-vortextracker/trk_plot/plottrak).
4. plotdir: path to the directory where the plot files will be created (for example,

/home/${USER}/HWRF/src/gfdlvortextracker/trk_plot/plottrak/tracks).
● Edit atcfplot.gs to define the following paths:

1. rundir: same as scrdir in atcfplot.sh. Note rundir must end with a “/”.
2. netdir: same as plotdir in atcfplot.sh. Note netdir must end with a “/”.

● Edit get_mods.sh to define the following paths:
1. rundir: same as scrdir in atcfplot.sh
2. netdir: same as plotdir in atcfplot.sh
3. ndate: path to the script ndate.ksh
4. nhour: path to the script nhour.ksh

● Edit get_verif.sh to define the following paths:
1. rundir: same as scrdir in atcfplot.sh
2. netdir: same as plotdir in atcfplot.sh
3. ndate: path to the script ndate.ksh
4. nhour: path to the script nhour.ksh

 128

● The users need to insert or append their vortex tracker output, fort.64, into the file
a${Basin}${SID}${YYYY}.dat.

● After setting up the paths to the correct locations in your system, run the script
using the command:

atcfplot.sh ${YYYY} ${Basin}

This will start a GUI window and read in ATCF format track files a${Basin}${SID}${YYYY}.dat
in $rundir (${SID} is the storm ID) for storms in year ${YYYY} in the ${Basin} basin.

For example, the user can use the command “atcfplot.sh 2011 al” to plot the track files
aal${SID}2011.dat in the ${rundir} directory.

When the GUI window appears, from the drop down menu, select a storm, start date, and a model
name (“atcfname” in the GFDL vortex tracker namelist), then click the “Plot” button to plot the
track. The plots can be exported to image files by using the “Main” and then “Print” menu
options.

The default tracker namelist is set to use the ATCF model name “HCOM”. If the user changes
this name in the tracker namelist, the ATCF_PLOT GUI will not recognize the new name. In this
case, the user needs to replace an unused atcfname with the new atcfname. The atcfnames in the
GUI can be found by searching in function “modnames” in file atcfplot.gs. Note all three
instances of the unused atcfname need to be replaced in atcfplot.gs.

For example, if “USER” was employed as the ATCF model name in the users’ GFDL Vortex
Tracker output fort.64, file atcfplot.gs needs to be modified to have the ATCF_PLOT program
GUI interface show a button for the atcfname “USER”. To do that, open file atcfplot.gs, go to
function “modnames”, find an atcfname that will not be used, for example “HCOM”, and
manually replace the string “HCOM” with “USER”.

 129

Chapter 9: HWRF Idealized Tropical Cyclone
Simulation

9.1 Introduction
Initial conditions for the HWRF Idealized Tropical Cyclone case are specified using an idealized
vortex superposed on a base state quiescent sounding. The default initial vortex has an intensity
of 20 ms-1 and a radius of maximum winds of 90 km. To initialize the idealized vortex, a
nonlinear balance equation in pressure-based sigma coordinates is solved within the rotated
latitude–longitude E-grid framework.

The default initial ambient base state assumes a f-plane at the latitude of 12.5o. The sea surface
temperature is time-invariant and horizontally homogeneous, with the default set to 302 K. No
land is used in the simulation domain.

The lateral boundary conditions used in the HWRF idealized simulation are the same as used in
real data cases. This inevitably leads to some reflection when gravity waves emanating from the
vortex reach the outer domain lateral boundaries.

The idealized simulation uses the operational HWRF triple-nested domain configuration with grid
spacing at 27-, 9-, and 3-km. All the operational atmospheric physics, as well as the supported
experimental physics options in HWRF, can be used in the idealized HWRF framework. The UPP
(see Chapter 7) can be used to postprocess the idealized HWRF simulation output.

The setup of the idealized simulation requires the use of WPS to localize the domain
(geogrid.exe) and to process GFS data for initial and boundary conditions (ungrib.exe and
metgrid.exe). The initialization using WPS just provides a framework for the initial conditions,
which are actually specified in ideal.exe to be composed of a quiescent environment with a
prescribed vortex. The boundary conditions generated with WPS are also overwritten by
ideal.exe to be consistent with the quiescent environment.

The initial base state temperature and humidity profile is prescribed in file sound.d, while the
vortex properties are specified in input.d. The latter file is also used to specify options for f-plane
and ß-plane.

 130

Figure 9-1. Flow diagram for the NMM idealized tropical cyclone capability.

 131

9.2 How to Use HWRF for Idealized Tropical
Cyclone Simulations

9.2.1 Source code

The HWRF V3.5a release is required, as the idealized capability is not available in previous
releases. Only the WPS and WRFV3 components are required for the idealized tropical cyclone
simulations. The UPP can be used for postprocessing. The other HWRF components do not need
to be compiled. Please see Chapter 2 for instructions to compile the WPS, WRF and, if desired,
UPP. Note that the executable file wrf.exe needed for the idealized simulation is not the same as
the one needed for the simulation for real data. Therefore, users should follow the instructions
specific for building the idealized wrf.exe. In this Users’ Guide, we assume that the user will
install HWRF in directory ${SCRATCH}/HWRF.

9.2.2 Input files and datasets

Two GFS GRIB files are needed to provide a template for creating the initial and lateral boundary
conditions. One of the GFS GRIB files should be the analysis valid at the same time of the
desired HWRF initialization. The other GRIB file should be a forecast, with lead time equal to or
greater than the desired HWRF simulation. The meteorological data in these files will not be used
to initialize the simulation -- these files are for template purposes only.

As an example, files 0825012000000 and 0825512000000, are included in the tar file
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized/hwrfv3.5a_idealized.tar.g
z.

Next the user must verify that all the input files below exist in
${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone.

1. Namelist file for WPS: namelist.wps. Note that geog_data_path should be
modified to point to the actual path of the geog data files.

2. Namelist file for WRF: namelist.input.
3. Vortex description file: input.d.
4. Sounding data: sound.d. Note that four sounding files are provided in

${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone (sound.d, sound_gfdl.d,
sound_jordan.d, and sound_wet.d). However, only the one named sound.d will be
used. In order to use a different sounding, rename it to sound.d.

5. Vortex center file: storm.center.
6. Sigma file: sigma.d.

9.2.3 General instructions for running the executables

To perform the idealized simulation the following executables need to be run: geogrid.exe,
ungrib.exe, mod_levels.exe, metgrid.exe, ideal.exe, and wrf.exe. Since the executables are
compiled with distributed memory capability, many computing platforms require they be run on
compute nodes. Instructions for running jobs on compute nodes can be found in Section 6 of
Chapter 1.

http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized/hwrfv3.5a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized/hwrfv3.5a_idealized.tar.gz

 132

The scripts and wrappers described in previous chapters for running HWRF using real data are
not used for the idealized simulation. Since the workflow of the idealized simulation is fairly
simple, the commands can be run manually.

9.2.4 Running WPS to create the initial and boundary conditions

The steps below outline the procedure to preprocess the data for the creation of initial and
boundary conditions for the idealized simulation. It assumes that the run will be conducted in a
working directory named $workdir/wpsprd.

1. Create and change into directory for running WPS
a. mkdir $workdir/wpsprd
b. cd $workdir/wpsprd

2. Run geogrid
a. Make a directory for the geogrid table and change into it

■ mkdir geogrid
■ cd geogrid

b. Link the geogrid table
■ ln -fs ${SCRATCH}/HWRF/WPSV3/geogrid/GEOGRID.TBL.NMM

./GEOGRID.TBL
c. Copy the WPS namelist

■ cd $workdir/wpsprd
■ cp

${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone/namelist
.wps .

d. Edit namelist.wps to make sure geog_data_path points to the location of
the WPS geographical data files

e. Run executable geogrid.exe on the command line or submit it to a
compute node or batch system

■ ${SCRATCH}/HWRF/WPSV3/geogrid.exe
f. Verify that the output files were created

■ ls -l geo_nmm_nest.l01.nc geo_nmm.d01.nc
3. Run ungrib

a. Link the ungrib table
■ ln -fs

${SCRATCH}/HWRF/WPSV3/ungrib/Variable_Tables/Vtable.GFS
./Vtable

b. Extract the two input GFS files
■ Download tarfile with GFS input data

http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized/h
wrfv3.5a_idealized.tar.gz

■ tar xzvf hwrfv3.5a_idealized.tar.gz
■ gunzip 0825012000000.gz

http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized/hwrfv3.5a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized/hwrfv3.5a_idealized.tar.gz

 133

■ gunzip 0825512000000.gz
■ ls -l 0825012000000 0825512000000

c. Link the GFS files to the names expected by ungrib
■ ${SCRATCH}/HWRF/WPSV3/link_grib.csh 0825012000000

0825512000000
d. Run executable ungrib.exe on the command line or submitting it to a

compute node or batch system
■ ${SCRATCH}/HWRF/WPSV3/ungrib.exe

e. Verify that the output files were created
■ ls -l GFS:2008-09-06_12 GFS:2008-09-11_12

4. Run metgrid
a. Make a directory for the metgrid table and change into it

■ mkdir metgrid
■ cd metgrid

b. Link the metgrid table
■ ln -fs

${SCRATCH}/HWRF/WPSV3/metgrid/METGRID.TBL.NMM
./METGRID.TBL

c. Run executable mod_levels.exe twice on the command line or submitting
it to a compute node or batch system. This program is used to reduce the
number of vertical levels in the GFS file. Only the levels listed in variable
press_pa in namelist.wps will be retained.

■ cd $workdir/wpsprd
■ ${SCRATCH}/HWRF/WPSV3/util/mod_levs.exe GFS:2008-09-

06_12 new_GFS:2008-09-06_12
■ ${SCRATCH}/HWRF/WPSV3/util/mod_levs.exe GFS:2008-09-

11_12 new_GFS:2008-09-11_12
d. Verify that the output files were created

■ ls -l new_GFS:2008-09-06_12 new_GFS:2008-09-11_12
e. Run executable metgrid.exe on the command line or submitting it to a

compute node or batch system
■ ${SCRATCH}/HWRF/WPSV3/metgrid.exe

f. Verify that the output files were created
■ ls -l met_nmm.d01.2008-09-06_12:00:00.nc met_nmm.d01.2008-

09-11_12:00:00.nc

9.2.5 Running ideal.exe and wrf.exe

The steps below outline the procedure to create initial and boundary conditions for the idealized
simulation. It assumes that the run will be conducted in a working directory named
$workdir/wrfprd.

 134

1. Create and change into directory for running ideal and real
a. mkdir $workdir/wrfprd
b. cd $workdir/wrfprd

2. Run ideal
a. Link WRF input files

■ ln -fs ${SCRATCH}/HWRF/hwrf-
utilities/parm/hwrf_ETAMPNEW_DATA ETAMPNEW_DATA

■ ln -fs ${SCRATCH}/HWRF/hwrf-
utilities/parm/hwrf_GENPARM.TBL GENPARM.TBL

■ ln -fs ${SCRATCH}/HWRF/hwrf-
utilities/parm/hwrf_LANDUSE.TBL LANDUSE.TBL

■ ln -fs ${SCRATCH}/HWRF/hwrf-
utilities/parm/hwrf_SOILPARM.TBL SOILPARM.TBL

■ ln -fs ${SCRATCH}/HWRF/hwrf-
utilities/parm/hwrf_VEGPARM.TBL VEGPARM.TBL

■ ln -fs ${SCRATCH}/HWRF/hwrf-utilities/parm/hwrf_tr49t67
tr49t67

■ ln -fs ${SCRATCH}/HWRF/hwrf-utilities/parm/hwrf_tr49t85
tr49t85

■ ln -fs ${SCRATCH}/HWRF/hwrf-utilities/parm/hwrf_tr67t85
tr67t85

b. Link the WPS files
■ ln -fs $workdir/wpsprd/met_nmm* .
■ ln -fs $workdir/wpsprd/geo_nmm* .

c. Copy the idealized simulation input files
■ cp

${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone/input.d .
■ cp

${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone/sigma.d
.

■ cp
${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone/sound.d
.

■ cp
${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone/storm.ce
nter .

d. Copy namelist input
■ cp

${SCRATCH}/HWRF/WRFV3/test/nmm_tropical_cyclone/namelist
.input .

e. Edit and modify files input.d, sound.d, if desired

 135

■ The sounding files provided have 30 vertical levels. In order to use
a sounding with different number of levels, it is necessary to
modify the source code in
${SCRATCH}/HWRF/WRFV3/dyn_nmm/module_initialize_tropica
l_cyclone.F. In subroutine tem, parameter nv should be modified
from 30 to the number of levels in the sounding.

■ File storm.center should not be altered to make sure the storm is
located in the center of the inner nest

■ File sigma.d should not be modified as it does not pertain to the
vertical levels of the sounding or of the simulation. Rather, it
defines the vertical levels used to create the initial vortex.

f. Run executable ideal.exe on the command line or submitting it to a
compute node or batch system
■ ${SCRATCH}/HWRF/WRFV3/main/ideal.exe

g. Verify that the output files were created
■ ls -s wrfinput_d01 wrfbdy_d01 fort.65

5. Run WRF
a. Run executable wrf.exe on the command line or submitting it to a

compute node or batch system
■ ${SCRATCH}/HWRF/WRFV3/main/wrf.exe
■ Note that executable wrf.exe must have been created using the

instructions for idealized simulations described in Chapter 2. The
executable created for regular HWRF simulations that ingest real
data should not be used to conduct idealized simulations.

b. Verify that the output files were created
■ ls -l wrfout_d01* wrfout_d02* wrfout_d03*

9.2.6 Using UPP to post-process the idealized tropical cyclone simulation output.

Once the WRF output (files wrfout*) have been created in directory $workdir/wrfprd, the
procedures outlined in Chapter 7 to run UPP using the wrappers and scripts can be used.

 136

Appendix
The following environment variables are defined in
hwrf_utilities/wrapper_scripts/global_vars.ksh

Variable names in bold are independent variables that need to be explicitly defined by the user.
The remaining variables are defined using these independent variables and should not be edited.

1. Storm Info (settings for SANDY 18L 2012 storm)

Variable Name Description Example
START_TIME HWRF initialization time 2012102806

START_TIME_MINUS6 Time 6 h before HWRF initialization 2012102800

FCST_LENGTH Forecast length in hours 126

FCST_INTERVAL Time between consecutive HWRF cycles 6

STORM_NAME Storm name issued by NHC SANDY

SID Storm identification 18L

BASIN Storm ocean basin (AL, EP, CP, WP, IO) AL

2. Component options

Variable Name Description Example

HWRF
IO_FMT IO format (1 for binary, 2 for NetCDF) 2

RUN_PREP_HYB Logical variable to determine the use of

prep_hybrid to process spectral global model

data in hybrid native coordinates for HWRF

initialization

T

GSI_USE_SAT Not used

UPP_PROD_SAT Logical variable to determine if synthetic

satellite images will be produced during

postprocessing

F

GFS_DATA_MODE Choice of variables present in global model

input to HWRF. Using “REDUCED” speeds

processing time

REDUCED

use_extended_eastatl Logical variable to determine use of extended

East Atlantic POM-TC domain

F

BKG_MODE Background (global model) source GDAS

Domain option sizes

ATMOS_DOMAINS Number of atmospheric domains 3

NX1 Number of grid points in meridional direction 216

 137

in parent domain

NY1 Number of grid points in zonal direction in

parent domain

432

DXX Parent grid meridional spacing (deg) 0.18

DYY Parent grid zonal spacing (deg) 0.18

DTT Parent grid dynamic timestep (s) 45

VERT_LEV Number of vertical levels 43

IO_SERVERS Loginal variable to determine use of I/O servers YES

IOSRV_PERGRP Number of I/O servers per group 4

IOSRV_GROUPS Number of I/O server groups 4

GSI Options

RUN_GSI Logical variable to determine if GSI will be

run
T

RUN_GSI_WRFINPUT Logical variable to determine if GSI will be

run in the parent domain

T

RUN_GSI_WRFGHOST Logical variable to determine if GSI will be

run in the ghost domain

F

INNER_CORE_DA Variable to determine inner core data

assimilation will be performed (0=no;

1=assimilate TDR; 2=assimilate TDR and

other inner core data – unsupported)

1

FGAT Array containing number of hours, counting

from the HWRF initialization time, for

which global model data will be

preprocessed for use FGAT

-3,0,3

GSI_USE_RAD Logical variable to determine if satellite

radiances will be assimilated

F

GSI_ENS_REG Logical variable to determine if global

ensemble data should be used

T

GSI_ENS_REG_SIZE Number of members in ensemble used by GSI

for hybrid data assimilation

80

GSI_ENS_REG_OPT Variable to indicate to GSI the ensemble source

type (1=GEFS)

1

3. Paths for source, script, and output directories
HWRF_SRC_DIR Path to the HWRF source code ${SCRATCH}/HWRF/sorc/

HWRF_SCRIPTS Path to low-level scripts

${HWRF_SRC_DIR}/hwrf-utilities/scripts

HWRF_OUTPUT_DIR Path to the HWRF output ${HWRF_SRC_DIR}/../results

 138

4. HWRF data and fixed file paths

DATA

HWRF_DATA_DIR Path to the HWRF input data sets /tmp/datasets

CYCLE_DATA Path to the previous cycle output ${HWRF_OUTPUT_DIR}/${SID}/${STAR

T_TIME_MINUS6}

DOMAIN_DATA Path to the previous cycle output ${HWRF_OUTPUT_DIR}/${SID}/${STAR

T_TIME}

GFS_DIR Path to the toplevel GFS input data ${HWRF_DATA_DIR}/GFS

GFS_SPECTRAL_DIR Path to the GFS spectral input data ${GFS_DIR}/spectral

GFS_GRIDDED_DIR Path to the GFS gridded input data

${GFS_DIR}/gridded

GFS_OBS_DIR Path to the GFS observational input data ${GFS_DIR}/obs

GEFS_DIR Path to the toplevel GEFS input data ${HWRF_DATA_DIR}/GEFS

GEFS_ENS_FCST_DIR Path to the GEFS input data ${GEFS_DIR}/spectral

GDAS_DIR Path to the toplevel GDAS input data ${HWRF_DATA_DIR}/GDAS

GDAS_SPECTRAL_DIR Path to the GDAS spectral input data ${GDAS_DIR}/spectral

GDAS_GRIDDED_DIR Path to the GDAS gridded input data ${GDAS_DIR}/gridded

GDAS_OBS_DIR Path to the GDAS observational input data ${GDAS_DIR}/obs

TDR_OBS_DIR Path to the TDR observations ${HWRF_DATA_DIR}/TDR

TCVITALS Path to the TCVitals files ${HWRF_DATA_DIR}/Tcvitals

FIXED

OCEAN_FIXED_DIR Path to the ocean fix data ${HWRF_DATA_DIR}/fix/ocean

LOOP_CURRENT_DIR Path to the ocean loop current and

warm/cold core rings data
${HWRF_DATA_DIR}/loop_current

CRTM_FIXED_DIR Path to the CRTM fix files used by UPP ${HWRF_DATA_DIR}/fix/upp

GEOG_DATA_PATH Path to geographical fix data ${HWRF_DATA_DIR}/wps_geog

GSI

GSI_FIXED_DIR Path to the GSI fix ${HWRF_DATA_DIR}/fix/gsi

GSI_CRTM_FIXED_DIR Path to the CRTM fix files used by GSI ${HWRF_DATA_DIR}/fix/gsi/CRTM_Coef

ficients

5. Runtime specific settings

MPIRUN Command used to run parallel code mpiexec

WRF_ANAL_CORES

Number of cores to run WRF analysis 12

WRF_GHOST_CORES Number of cores to run WRF ghost 12

HWRF_FCST_CORES Number of cores to run the HWRF 202

 139

forecast

GEOGRID_CORES Number of cores to run geogrid 12

METGRID_CORES Number of cores to run metgrid 1

REAL_CORES Number of cores to run real 1

GSI_CORES Number of cores to run GSI 100

UNI_CORES Number of cores to run unipost 12

PREP_HYB_CORES Number of cores to run prep_hybrid 1

ATCFNAME ATCF identifier for HWRF forecast HCOM

6. Path to GrADS tools

GRADS_BIN Path to GrADS /apps/grads/2.0.1/bin

GADDIR Path to GrADS binaries /apps/grads/lib/

7. Component paths

WRF_ROOT Path to WRF source code ${HWRF_SRC_DIR}/WRFV3

WPS_ROOT Path to WPS source code ${HWRF_SRC_DIR}/WPSV3

UPP_ROOT Path to UPP source code ${HWRF_SRC_DIR}/UPP

HWRF_UTILITIES_ROOT Path to HWRF Utilities source code ${HWRF_SRC_DIR}/hwrf-utilities

GSI_ROOT Path to GSI source code ${HWRF_SRC_DIR}/GSI

POMTC_ROOT Path to POM-TC source code ${HWRF_SRC_DIR}/pomtc

TRACKER_ROOT Path to GFDL vortex tracker source code ${HWRF_SRC_DIR}/gfdl-vortextracker

COUPLER_ROOT Path to coupler source code ${HWRF_SRC_DIR}/ncep-coupler

NOAA Technical Memorandum OAR GSD-43

COMMUNITY HWRF USERS GUIDE V3.5A

Ligia Bernardet1
Shaowu Bao2
Richard Yablonsky3
Don Stark4
Timothy Brown1

1 Cooperative Institute for Research in Environmental Sciences (CIRES), Developmental Testbed Center and NOAA/ESRL/GSD
2 Cooperative Institute for Research in Environmental Sciences (CIRES) and currently affiliated with S. Carolina Coastal University and

 NOAA/ESRL/GSD
3 University of Rhode Island
4 Developmental Testbed Center and NCAR/RAL/JNT

UNITED STATES
DEPARTMENT OF COMMERCE

Penny Pritzker
Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

Dr. Kathryn Sullivan
Acting Under Secretary for Oceans
And Atmosphere/acting Administrator

Office of Oceanic and
Atmospheric Research

Dr. Robert Detrick
Assistant Administrator

	HWRF v3.5a Users Guide
	NOAA-GSD-TECH_Memo-Covers_OAR-GSD-43
	HWRF_v3.5a_Users_Guide
	Chapter 1: HWRF System Introduction
	1.1 HWRF System Overview
	1.2 HWRF Development and Support
	1.3 HWRF Source Code Directory Structure
	1.4 Input Data Directory Structure
	1.5 Production Directory Structure
	1.6 Scripts for Running HWRF

	Chapter 2: Software Installation
	2.1 Introduction
	2.2 Obtaining the HWRF Source Code
	2.3 Setting up the HWRF System
	2.4 System Requirements, Libraries and Tools
	2.4.1 Compilers
	2.4.2 netCDF and MPI
	2.4.3 LAPACK and BLAS

	2.5 Included Libraries
	2.5.1 Component Dependencies

	2.6 Building WRF-NMM
	2.6.1 Configuring WRF-NMM
	2.6.2 Compiling WRF-NMM
	2.6.3 Compiling the Idealized Tropical Cyclone WRF-NMM

	2.7 Building HWRF-Utilities
	2.7.1 Set Environment Variables
	2.7.2 Configure and Compile

	2.8 Building POM-TC
	2.8.1 Set Environment Variables
	2.8.2 Configure and Compile

	2.9 Building GFDL Vortex Tracker
	2.9.1 Set Environment Variables
	2.9.2 Configure and Compile

	2.10 Building the NCEP Coupler
	2.10.1 Configure and Compile

	2.11 Building WPS
	2.11.1 Background
	2.11.2 Configure and Compile

	2.12 Building UPP
	2.12.1 Set Environment Variables
	2.12.2 Configure and Compile

	2.13 Building GSI
	2.13.1 Background
	2.13.2 Configure and Compile

	Chapter 3: HWRF Preprocessing System
	3.1 Introduction
	3.2 How to Run the HWRF Preprocessing Using Scripts
	3.2.1 hwrfdomain_wrapper
	3.2.2 geogrid_wrapper
	3.2.3 prep_hybrid_wrapper
	3.2.4 ungrib_wrapper
	3.2.5 metgrid_wrapper

	3.3 Executables
	3.3.1 geogrid.exe
	3.3.2 ungrib.exe
	3.3.3 metgrid.exe
	3.3.4 hwrf_prep.exe

	3.4 Algorithm to Define the HWRF Domain Using the Storm Center Location
	3.5 HWRF Domain Wizard
	3.6 Inner-Core Data Assimilation

	Chapter 4: HWRF Atmospheric Initialization
	4.1 Overview
	4.2 Domains Used in HWRF
	4.3 How to Run the HWRF Initialization Using Scripts
	4.3.1 real_wrapper
	4.3.2 gsi_wrfinput_wrapper
	4.3.3 wrfanalysis_wrapper
	4.3.4 wrfghost_wrapper
	4.3.5 track_analysis_wrapper
	4.3.6 relocate1_wrapper
	4.3.7 relocate2_wrapper
	4.3.8 relocate3_wrapper
	4.3.9 gsi_wrfghost_wrapper
	4.3.10 merge_wrapper

	4.4 HWRF Initialization Executables
	4.4.1 copygb.exe
	4.4.2 diffwrf_3dvar.exe
	4.4.3 get_trk.exe
	4.4.4 gsi.exe
	4.4.5 hwrf_anl_4x_step2.exe
	4.4.6 hwrf_anl_bogus_10m.exe
	4.4.7 hwrf_anl_cs_10m.exe
	4.4.8 hwrf_create_nest_1x_10m.exe
	4.4.9 hwrf_create_trak_guess.exe
	4.4.10 hwrf_data_flag.exe
	4.4.11 hwrf_inter_2to1.exe
	4.4.12 hwrf_inter_2to2.exe
	4.4.13 hwrf_inter_2to6.exe
	4.4.14 hwrf_inter_4to2.exe
	4.4.15 hwrf_inter_4to6.exe
	4.4.16 hwrf_merge_nest_4x_step12_3n.exe
	4.4.17 hwrf_pert_ct1.exe
	4.4.18 hwrf_split1.exe
	4.4.19 hwrf_wrfout_newtime.exe
	4.4.20 unipost.exe

	4.5 Inner-core Data Assimilation

	Chapter 5: Ocean Initialization of POM-TC
	5.1 Introduction
	5.2 Run Ocean Initialization Using the Wrapper Script
	5.3 Functions in Script “pom_init.ksh”
	5.3.1 main
	5.3.2 get_tracks
	5.3.3 get_region
	5.3.4 get_sst
	5.3.5 sharpen
	5.3.6 phase_3
	5.3.7 phase_4

	5.4 Executables
	5.4.1 gfdl_find_region.exe
	5.4.2 gfdl_getsst.exe
	5.4.3 gfdl_sharp_mcs_rf_l2m_rmy5.exe
	5.4.4 gfdl_ocean_united.exe
	5.4.5 gfdl_ocean_eastatl.exe
	5.4.6 gfdl_ocean_ext_eastatl.exe
	5.4.7 gfdl_ocean_eastpac.exe

	Chapter 6: How to Run the Forecast Model
	6.1 Introduction
	6.2 How to Run HWRF Using the Wrapper Script hwrf_wrapper
	6.3 Running HWRF with Alternate Namelist Options
	6.4 Executables
	6.4.1 wrf.exe
	6.4.2 hwrf_wm3c.exe
	6.4.3 hwrf_ocean_united.exe
	6.4.4 hwrf_ocean_eastatl.exe
	6.4.5 hwrf_ocean_eastatl_ext.exe
	6.4.6 hwrf_ocean_eastpac.exe
	6.4.7 hwrf_swcorner_dynamic.exe

	6.5 Sample HWRF namelist

	Chapter 7: HWRF Post Processor
	7.1 Introduction
	7.2 How to Run UPP Using the Wrapper Script unipost_wrapper
	HWRF_SCRIPTS

	7.3 Overview of the UPP Script
	7.4 Executables
	7.4.1 unipost.exe
	7.4.2 copygb.exe

	Chapter 8: GFDL Vortex Tracker
	8.1 Introduction
	8.2 How to Run the GFDL Vortex Tracker Using the Wrapper Script
	8.3 Overview of the Script tracker.ksh
	8.4 How to Generate Phase Space Diagnostics
	8.5 How to Run the Tracker in Cyclogenesis Mode
	8.6 Executables
	8.6.1 hwrf_gettrk.exe
	8.6.2 hwrf_vint.exe
	8.6.3 hwrf_tave.exe

	8.7 How to Plot the Tracker Output Using ATCF_PLOT

	Chapter 9: HWRF Idealized Tropical Cyclone Simulation
	9.1 Introduction
	9.2 How to Use HWRF for Idealized Tropical Cyclone Simulations
	9.2.1 Source code
	9.2.2 Input files and datasets
	9.2.3 General instructions for running the executables
	9.2.4 Running WPS to create the initial and boundary conditions
	9.2.5 Running ideal.exe and wrf.exe
	9.2.6 Using UPP to post-process the idealized tropical cyclone simulation output.

	Appendix

	HWRF v3.5a Users Guide 3

